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● Syscalls are the primary way to interface with the OS

● Perform user-supplied function instead of syscall

● Purposes:

○ Monitoring

○ Tracing & Debugging

○ Record & Replay

○ Checkpoint & Restore

○ Virtualization/Emulation

○ Syscall filtering/Sandboxing

○ …

System Call Interposition - What & Why
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System Call Interposition - Goals

ExhaustiveEfficient

Expressive
Interposer should have no 

restrictions on its actions

Interposition should 

minimally impact 

performance

All syscalls should 

be interposed
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Syscall 

Interposer’s 

Triangle of 

Success
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Historically: Linux’ ptrace

mode 

switch

context 

switch
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Modern “kernel-to-user trap”

“Syscall User 

Dispatch (SUD)”
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Modern “kernel-to-user trap”

“Syscall User 

Dispatch (SUD)”
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Kernel-level Interposition: LKM/seccomp-bpf
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User-level Interposition: Binary Rewriting



1. Identify syscall instructions

○ Coverage vs Correctness

○ Code vs data

○ Unaligned instructions -> heuristics

○ Obfuscation

○ Dynamically loaded/generated code

2. Rewrite syscall instructions

○ Direct jmp/call > 2 bytes

○ Assumptions about surrounding code

○ zpoline!

User-level Interposition: Binary Rewriting
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● USENIX ATC 2023 

● “syscall” → “call rax”

zpoline

Yasukata, Kenichi, et al. "zpoline: a system call hook mechanism based on binary rewriting." 2023 

USENIX Annual Technical Conference (USENIX ATC 23). 2023.
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State of the Art: Recap

seccomp-BPF Binary RewritingSyscall User Dispatch

seccomp-user

Not Expressive

Exhaustive

Efficient

Expressive

Not Exhaustive

Efficient

Expressive

Exhaustive

Not Efficient
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The Paradox of an Ideal Syscall Interposer

You have to use 

the kernel to 

intercept syscalls

You cannot use 

the kernel to 

interpose syscalls



1. Use the kernel at first: 

identify syscalls on their 

first use

2. Stop using the kernel: 

rewrite syscalls on the fly

Dynamic Syscall Identification → Lazy Rewriting
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● Enable SUD via prctl(SUD_ON, &selector, [[allow_ip_range]])

○ selector and allowlisted IP range control interposition

● Rewrite syscall from SIGSYS handler

● Invoke fast-path entry point 
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Implementation of Lazy Rewriting With SUD



● Maximal throughput setup
● wrk client and 

nginx/lighttpd server 

communicate over 

localhost

● Baseline throughput 

maxes out at 1.5M req/s

with 12 workers (lighttpd)

Web Server Throughput

Benchmarks
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nginx

lighttpd



● syscall clobbers rax, rcx, r11

● Preserves everything else

● Binary rewriters preserve all GPRs, 

but nothing else

● May clobber everything else

Preserving ABI Compatibility

Current binary rewriters 

break the syscall ABI. 

Hinders expressiveness!
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● Intel Pin tool dynamically tracks register read/writes & syscalls

● Problematic pattern:

● Very compiler- and arch-dependent

Tracking Register Preservation Expectations

write reg

syscall

read reg

Must preserve 
reg
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Web Server Throughput Benchmarks

21

lighttpd
at most 4.70pp



Web Server Throughput Benchmarks
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lighttpd3.60pp at worst



● Execute 100M non-existent syscalls (sysno 500) in a tight loop

● Finding: SUD still adds overhead to permitted syscalls

Microbenchmark
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● We designed the first syscall interposer that is simultaneously efficient, 

expressive, and exhaustive → facilitates new interposition use cases!

● Our interest: secure syscall interposition to build sandboxes

● Contributions welcome!

So What Now?
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Questions?Check out the code! Read the paper!
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