
lazypoline:

System Call Interposition Without Compromise

Adriaan Jacobs, Merve Gülmez, Alicia Andries, 
Stijn Volckaert, Alexios Voulimeneas

1



● Syscalls are the primary way to interface with the OS

● Perform user-supplied function instead of syscall

● Purposes:

○ Monitoring

○ Tracing & Debugging

○ Record & Replay

○ Checkpoint & Restore

○ Virtualization/Emulation

○ Syscall filtering/Sandboxing

○ …

System Call Interposition - What & Why

2



System Call Interposition - Goals

ExhaustiveEfficient

Expressive
Interposer should have no 

restrictions on its actions

Interposition should 

minimally impact 

performance

All syscalls should 

be interposed

3

Syscall 

Interposer’s 

Triangle of 

Success



4

Historically: Linux’ ptrace

mode 

switch

context 

switch



5

Modern “kernel-to-user trap”

“Syscall User 

Dispatch (SUD)”



6

Modern “kernel-to-user trap”

“Syscall User 

Dispatch (SUD)”



7

Kernel-level Interposition: LKM/seccomp-bpf



8

User-level Interposition: Binary Rewriting



1. Identify syscall instructions

○ Coverage vs Correctness

○ Code vs data

○ Unaligned instructions -> heuristics

○ Obfuscation

○ Dynamically loaded/generated code

2. Rewrite syscall instructions

○ Direct jmp/call > 2 bytes

○ Assumptions about surrounding code

○ zpoline!

User-level Interposition: Binary Rewriting

9



1. Identify syscall instructions

○ Coverage vs Correctness

○ Code vs data

○ Unaligned instructions -> heuristics

○ Obfuscation

○ Dynamically loaded/generated code

2. Rewrite syscall instructions

○ Direct jmp/call > 2 bytes

○ Assumptions about surrounding code

○ zpoline!

User-level Interposition: Binary Rewriting

10



● USENIX ATC 2023 

● “syscall” → “call rax”

zpoline

Yasukata, Kenichi, et al. "zpoline: a system call hook mechanism based on binary rewriting." 2023 

USENIX Annual Technical Conference (USENIX ATC 23). 2023.
11



● USENIX ATC 2023 

● “syscall” → “call rax”

zpoline

Yasukata, Kenichi, et al. "zpoline: a system call hook mechanism based on binary rewriting." 2023 

USENIX Annual Technical Conference (USENIX ATC 23). 2023.
12



State of the Art: Recap

seccomp-BPF Binary RewritingSyscall User Dispatch

seccomp-user

Not Expressive

Exhaustive

Efficient

Expressive

Not Exhaustive

Efficient

Expressive

Exhaustive

Not Efficient

13



14

The Paradox of an Ideal Syscall Interposer

You have to use 

the kernel to 

intercept syscalls

You cannot use 

the kernel to 

interpose syscalls



1. Use the kernel at first: 

identify syscalls on their 

first use

2. Stop using the kernel: 

rewrite syscalls on the fly

Dynamic Syscall Identification → Lazy Rewriting

15



● Enable SUD via prctl(SUD_ON, &selector, [[allow_ip_range]])

○ selector and allowlisted IP range control interposition

● Rewrite syscall from SIGSYS handler

● Invoke fast-path entry point 

16

Implementation of Lazy Rewriting With SUD



● Maximal throughput setup
● wrk client and 

nginx/lighttpd server 

communicate over 

localhost

● Baseline throughput 

maxes out at 1.5M req/s

with 12 workers (lighttpd)

Web Server Throughput

Benchmarks

17

nginx

lighttpd



● syscall clobbers rax, rcx, r11

● Preserves everything else

● Binary rewriters preserve all GPRs, 

but nothing else

● May clobber everything else

Preserving ABI Compatibility

Current binary rewriters 

break the syscall ABI. 

Hinders expressiveness!

18



● Intel Pin tool dynamically tracks register read/writes & syscalls

● Problematic pattern:

● Very compiler- and arch-dependent

Tracking Register Preservation Expectations

write reg

syscall

read reg

Must preserve 
reg

19



● Intel Pin tool dynamically tracks register read/writes & syscalls

● Problematic pattern:

● Very compiler- and arch-dependent

Tracking Register Preservation Expectations

write reg

syscall

read reg

Must preserve 
reg

20



Web Server Throughput Benchmarks

21

lighttpd
at most 4.70pp



Web Server Throughput Benchmarks

22

lighttpd3.60pp at worst



● Execute 100M non-existent syscalls (sysno 500) in a tight loop

● Finding: SUD still adds overhead to permitted syscalls

Microbenchmark

23



● We designed the first syscall interposer that is simultaneously efficient, 

expressive, and exhaustive → facilitates new interposition use cases!

● Our interest: secure syscall interposition to build sandboxes

● Contributions welcome!

So What Now?

24



lazypoline: System Call Interposition Without Compromise

25

Merve 

Gülmez

Alicia

Andries

Stijn 

Volckaert
Alexios

Voulimeneas

Adriaan

Jacobs

Questions?Check out the code! Read the paper!


	Slide 1: lazypoline: System Call Interposition Without Compromise
	Slide 2: System Call Interposition - What & Why
	Slide 3: System Call Interposition - Goals
	Slide 4: Historically: Linux’ ptrace
	Slide 5: Modern “kernel-to-user trap”
	Slide 6: Modern “kernel-to-user trap”
	Slide 7: Kernel-level Interposition: LKM/seccomp-bpf
	Slide 8: User-level Interposition: Binary Rewriting
	Slide 9: User-level Interposition: Binary Rewriting
	Slide 10: User-level Interposition: Binary Rewriting
	Slide 11: zpoline
	Slide 12: zpoline
	Slide 13: State of the Art: Recap
	Slide 14: The Paradox of an Ideal Syscall Interposer
	Slide 15: Dynamic Syscall Identification → Lazy Rewriting
	Slide 16: Implementation of Lazy Rewriting With SUD
	Slide 17: Web Server Throughput Benchmarks
	Slide 18: Preserving ABI Compatibility
	Slide 19: Tracking Register Preservation Expectations
	Slide 20: Tracking Register Preservation Expectations
	Slide 21: Web Server Throughput Benchmarks
	Slide 22: Web Server Throughput Benchmarks
	Slide 23: Microbenchmark
	Slide 24: So What Now?
	Slide 25: lazypoline: System Call Interposition Without Compromise

