
Diagnosing and Neutralizing Address-Sensitive Behavior in
Multi-Variant Execution Systems

Anton Schelfhout
anton.schelfhout@kuleuven.be

DistriNet, KU Leuven
Ghent, Belgium

Adriaan Jacobs
adriaan.jacobs@kuleuven.be

DistriNet, KU Leuven
Ghent, Belgium

Jonas Vinck
jonas.vinck@kuleuven.be
DistriNet, KU Leuven

Ghent, Belgium

Stijn Volckaert
stijn.volckaert@kuleuven.be

DistriNet, KU Leuven
Ghent, Belgium

Abstract
Multi-Variant eXecution (MVX) systems are a potent building block
for comprehensive memory corruption defenses. They run multiple
diversified variants of the same program in parallel, feed them the
same inputs, and monitor whether they produce the same outputs.
If applied correctly, MVX systems ensure that (i) no single exploit
payload can simultaneously compromise all variants and (ii) any
exploit causes an observable divergence in the variants’ behavior.

After repeatedly demonstrating their prowess in detecting control-
flow hijacks, MVX systems are naturally keen to extend their protec-
tion to data-only attacks, which do not solely focus on corrupting
code pointers. However, that would require diversifying the vari-
ants’ data layout as well, which vastly exacerbates known compati-
bility issues of existing systems. Due to Address-Sensitive Behavior
(ASB), benign programs can behave in dissimilar but functionally
equivalent ways depending on memory layout and address values.
This causes variants to diverge in ways that are indistinguishable
from the effects of an attack to the MVX monitor.

In this paper, we explore the practical implications of adopting
data diversification inMVX systems. For the first time, we character-
ize and quantify the issue of ASB across a wide range of real-world
software, and find that it is a significant hurdle towards support for
data diversification in MVX. To help address this issue, we devel-
oped a new variant diffing technique that allows us to recognize
and, at times, even neutralize different classes of ASB by locating
address-related data in the variants without compiler support.

CCS Concepts
• Security and privacy→ Operating systems security; Software
security engineering.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
EuroSec’25, Rotterdam, Netherlands
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1563-1/2025/03
https://doi.org/10.1145/3722041.3723094

Keywords
Address-Sensitive Behavior, Multi-Variant Execution, Software Non-
Determinism, Software Diversity

1 Introduction
Memory safety issues are a long-standing source of exploitation
in the system-level software stack that underpins our digital in-
frastructure [1–7] . Despite numerous attempts to eliminate these
vulnerabilities through testing [8–10], fuzzing [11, 12], or migra-
tion to memory-safe languages [13–17], they continue to present a
flourishing exploitation avenue for attackers to this day [18] .

Among the landscape of defenses proposed overmany decades [19–
24], Multi-Variant eXecution (MVX) stands out as a particularly
strong approach to defeat memory error exploitation at a low run-
time cost [25–42]. MVX systems run multiple variants of the same
program in parallel, supply them with the same inputs, and dedupli-
cate their outputs [25]. The variants are semantically equivalent but
diversified so that exploit payloads cannot simultaneously compro-
mise all variants [43, 44]. Instead, they make the variants’ behavior
diverge [31]. The MVX system detects such divergences by run-
ning the variants in lock-step while comparing their system call
sequences and arguments [32].

Uniquely, MVX systems present an escape from the classical
trade-off between security and run-time overhead that characterizes
typical enforcement-based exploit mitigations [45, 46] , since the
overhead of monitoring and synchronizing variants at system calls
is relatively low (< 5% on syscall-intensive benchmarks [47]) and
indifferent to the set of diversity techniques applied to the variants.
Instead, the primary downside of MVX is its increased resource
consumption, often requiring additional system memory and CPU
cores to function efficiently [32]. Fortunately, these resources tend
to be easier to scale than the single-threaded performance ofmodern
processors [48]. This makes MVX an attractive solution for highly
security-critical yet performance-conscious applications.

This is especially true in the data-only attack era. Unlike control-
flow hijacks, which corrupt code pointers to achieve arbitrary code
execution, data-only attacks need not rely on corrupting specific
types of data [49–55] to achieve similarly insidious exploits [56–
58]. Instead, they can target a wide variety of hard-to-isolate pro-
gram data [59], such as system call arguments [55, 60], decision-
making data [59, 61, 62], or application-specific security-sensitive
data [7, 63, 64]. This has led many current mitigation proposals to

https://doi.org/10.1145/3722041.3723094


EuroSec’25, March 30-April 3 2025, Rotterdam, Netherlands Anton Schelfhout, Adriaan Jacobs, Jonas Vinck, and Stijn Volckaert

revert to enforcing complete [19, 20, 65–75] or partial [49–51, 53, 76–
78] memory safety, which requires frequent checks on most mem-
ory accesses, causing excessive run-time overhead. MVX systems
could instead inhibit the corruption or leakage of attack targets
through diversified data layouts in all variants, making the effects of
data-only exploits unpredictable and unequal among the different
variants [26], and leading to divergences [34, 79].

However, the broader adoption of data layout diversification in
MVX systems faces a major obstacle, as many programs behave
non-deterministically when their memory layout is not fixed. This
phenomenon, referred to as “Address-Sensitive Behavior” (ASB) in
prior work [29, 31, 80], is a known issue for reproducibility and
checkpoint/restore use cases [81–83], but is fatal for MVX sys-
tems [80]. Listing 1 shows an address-dependent sorting operation,
a typical example of ASB. As the order of objects differs across
variants, different objects will be printed. These divergences, while
benign, are indistinguishable from the effects of an attack on the
system. As such, ASB inhibits current-generation MVX systems
from adopting the data diversification necessary to counter modern
data-only attacks at a time when comparably efficient defenses for
these attacks are as sought-after as they are rare.

int compare(const void* a, const void* b) {
return (*(intptr_t*)a - *(intptr_t*)b);

}
int main() {

int arr[] ={object1, object2, ...};
qsort(arr, sizeof(sometype), compare);
print_array(arr,n);

}

Listing 1: Example of an address-dependent iteration order,
with differing syscall behavior as a result.

Studying, characterizing, and exploring a path towards neutral-
izing Address-Sensitive Behavior (ASB) in the context of MVX is
the central focus of this paper. For the first time, we examine the
presence and effects of ASB in a broad range of software. Through
manual experimentation with diversified data layouts in a state-
of-the-art MVX system, we readily find numerous examples in
common, moderately complex programs, such as the SPEC CPU
suite [84]. We show that previous neutralization efforts do not
suffice to handle more complex cases of ASB, and argue that the
challenge of complete ASB neutralization is much greater than pre-
viously understood. In search of a pragmatic solution, we develop
a new variant diffing technique that leverages data layout diversi-
fication to let the monitor automatically discover the location of
pointers in the variants’ address spaces. For diverging system calls
where contents of buffer arguments differ, this technique allows
for determining if the differing bytes are indeed pointers and if
they are equivalent among the variants. This automatically allevi-
ates the compatibility issue observed in previous work [47]. For
the more common type of ASB-originated divergences where the
variants have taken a different control-flow path, we use the vari-
ant diffing technique to help diagnose the original location of ASB
in the program. While we cannot confidently distinguish benign
from malicious behavior in this case, our diagnostic information
helps bridge the gap between the opaque divergence and its subtle

ASB-related cause, and lets developers know where to manually
refactor their code to eliminate the non-deterministic behavior.

In summary, we contribute the following. First, we demonstrate
the problem ASB causes for data layout diversification inside MVX
systems, analyze common examples of ASB, and identify limitations
of previous ASB neutralization attempts. Then, we present a new
technique called variant diffing that allows us to automatically
understand the memory layout of diversified variants in an MVX
system. We implemented this technique in a diagnostic tool that
helps us link divergences back to the source code location of the ASB
that caused them. Finally, we present an automatic neutralization
technique that uses our variant diffing infrastructure to distinguish
benign from malicious divergences for certain ASB classes.

2 Background
MVX systems were originally conceived as a mechanism for turning
probabilistic software diversity-based defenses into deterministic
defenses [26–31, 33, 34, 40, 79]. The core idea is that benign pro-
gram functionality is oblivious to low-level details such as memory
layout [31, 85] or instruction set architecture [42, 79], while suc-
cessful exploits must be specifically tailored to these aspects of
each variant [43]. Due to the input replication in MVX, the input
payload cannot be specialized to each variant, and any successful
exploitation of a single variant would trigger diverging behavior
from the other variants. Since their initial conception, MVX systems
have also been adapted to increase software reliability or to safely
deploy software updates [25, 35–37]. Almost all security-focused
MVX systems verify that the variants perform the same system
calls [28–30, 32, 79], with the same arguments, in the same order,
to ensure equivalent behavior. This monitoring granularity strikes
an attractive balance between the overhead of synchronizing and
monitoring variant operations, and preventing successful exploita-
tion from going unnoticed. After all, to have a real impact on the
system, exploits eventually have to perform system calls [29].

Prior work on MVX has primarily focused on defenses against
code-injection and control-flow hijacking attacks [25, 26, 28, 31, 86].
However, in response to improving code pointer defenses, attackers
have increasingly shifted toward advanced exploit techniques that
do not rely on corrupting code pointers at all, so-called data-only
attacks [56–60, 87]. Direct Data Manipulation (DDM) attacks, like
DirtyCred [61] and Heartbleed [7], directly access security-critical
data without hijacking the control flow first [56, 59, 60, 62]. More
recently, Hu et al. showed that Data-Oriented Programming (DOP)
attacks can grant expressive code execution capabilities [57], by
overwriting function arguments and conditional expressions that
determine the control flow of the program [57, 58, 88].

Previous work has recognized the shortcomings of code-level di-
versification alone [89–91], also in the context of MVX [26, 34, 79],
and has taken to data layout diversification in response [90]. As
was also observed by previous work [34, 80], this may cause slight
variations in the variants’ order of operations, which can cause be-
nign divergences and prompt a shutdown. One proposed solution to
this problem is to relax monitoring granularity, as implemented by
BUDDY [34] and DieHard [26], which only check for equivalence
of I/O syscalls. As Lu et al. state, this helps avoid cases where the
order or arguments of syscalls is affected by the variants’ memory



Diagnosing and Neutralizing Address-Sensitive Behavior in Multi-Variant Execution Systems EuroSec’25, March 30-April 3 2025, Rotterdam, Netherlands

layout [34]. Indeed, many cases of previously reported ASB pri-
marily affect memory-related syscalls, such as mmap or mprotect,
which are not included for divergence checking under an I/O-only
policy [32, 34]. However, the effects of ASB are not fundamentally
limited to syscalls that implement memory management operations
(as we show in Section 3.1). Worse yet, relaxing the monitoring
granularity to I/O syscalls alone also forfeits the MVX system’s
unique ability to comprehensively stop both existing and new attack
vectors, irrespective of a specific attacker interface to the applica-
tion, such as the network. Many more syscalls, including those
that implement memory-management operations, can be abused
by attackers [32, 92], which may not always involve the specific
I/O interface targeted by relaxed MVX systems.

We believe that the effects of ASB and benign divergences impact
broader MVX adoption, necessitating a conscious approach that
preserves the security advantages of MVX in the data-only era
instead of sacrificing them for niche ASB issues.

ASB is not the sole cause of benign divergences in MVX. How-
ever, it is the only cause that has not been thoroughly investigated
and addressed in prior research. Other causes include asynchronous
signal delivery [93], inter-process [47] and inter-thread [94] com-
munication via shared memory, and virtual system call pages [31].
All of these causes represent sources of input the variants can read
directly from user space, thus bypassing the monitor. Without the
monitor’s mediation, variants could receive different inputs from
these input sources and start to diverge.

3 Address-Sensitive Behavior
The fact that programs behave non-deterministically with respect
to their memory layout is not a new finding and has frustrated
development efforts beyondMVX alone. GDB [95] disables Address-
Space Layout Randomization (ASLR) by default to help improve
the consistency of bug reproduction across runs. Developers of
the KLEE symbolic execution engine [96] recently proposed an
approach to neutralize the non-deterministic effects of the heap
allocator during path exploration [83], which significantly affected
bug finding times, by enforcing deterministic heap layouts across
program runs. Similarly, Riot Games developers encountered non-
determinismwhen analyzing League of Legends game replays using
their Chronobreak infrastructure [81], which was, in part, caused
by ASB. MVX systems have long included workarounds for ASB too,
since it already caused issues for code layout diversification alone.
For instance, GHUMVEE [29] exposes a binary patching interface
which allows developers to replace address-sensitive operations
with variant-agnostic and address-insensitive operations [29].

None of these prior ASB encounters fully demonstrate the is-
sues it causes for fine-grained data layout diversification in MVX.
Unlike bug-finding or game replay use cases, MVX systems can-
not completely disable randomization since they depend on it for
their security benefits. On the other hand, targeted and manual
neutralization, such as that supported by GHUMVEE’s patching in-
frastructure [29], presupposes that developers already know where
the address-sensitive operations are and how they can be rewritten
into semantically equivalent address-insensitive operations. The
former is especially difficult to determine based on opaque and pos-
sibly hard-to-reproduce divergences reported by the MVX monitor.

3.1 Common Examples of ASB
To better understand the impact of ASB on MVX, we examined
previous mentions of ASB-induced divergences in existing MVX
research [28, 29, 34, 40]. We then carried out experiments running
data-diversified variants of various desktop utilities [97–103] and
the SPEC CPU2006 suite [84] in the ReMon [32] MVX system to get
a picture of relevant ASB cases in real-world software. We describe
the most relevant causes of ASB below. All listed ASB occurrences
can be eliminated by manually refactoring the code. The main
difficulty is finding which code constructs cause ASB. Later in this
paper, we introduce variant diffing, a novel technique that makes
the search for ASB causes easier. Using this variant diff, we can
mitigate certain ASB occurrences without manual refactoring.

C1 Uninitialized memory. The effective value of uninitialized
memory depends on the contents previously allocated at those
memory addresses, potentially making it variant-specific. In many
cases, it is desirable to detect uninitialized reads [104], as they repre-
sent bugs or vulnerabilities in the program [26, 105, 106]. However,
uninitialized memory can also inadvertently appear as padding
bytes of structs in buffer arguments to system calls [80], where they
could be used to leak data [40], leading to unrecoverable divergences
between the variants. We found such cases in X11 programs that
communicate structured data via socket calls to the X11 server, e.g.,
in libmotif ’s [103] WriteTargetsTable function, used by various
X11 programs such as xpdf [102] and xedit [101].

Österlund et al. invariably zero out diverging bytes [40], with-
out stopping execution. Alternatively, all memory can be zero-
initialized on allocation [104].

C2 Pointers passed in untyped buffer arguments. Pointers reg-
ularly appear as syscall arguments, in which case typical MVX
systems compare the pointed-to contents of the pointers for equiv-
alence [28]. For typed arguments, this is not an issue; if diverging
bytes are typed as pointers, theMVX systemwill ignore the different
pointers and compare the pointed-to content itself. However, they
can also appear unexpectedly in untyped buffer arguments [29],
e.g., when serializing binary data or printing out pointer values [47].
We found that graphical X11 applications, once again, communi-
cate raw pointer values as part of structured data in buffers to the
X11 server. The mplayer [107] video player also printed out string
representations of pointer values during its warning logging.

Current MVX monitors cannot distinguish these buffers from
malicious attempts to leak data or pointers, and flag a divergence.

C3 Pointers as keys in hash map.Widely used system libraries
often use an address-sensitive value (often the address of an object)
as keys in hash maps. Since the keys differ across variants, the dis-
tribution of objects within the hash map will also differ. This could
cause one variant to experience more bucket collisions, resulting in
one variant requesting more memory. Many real-world applications
contain this pattern. The LLVM compiler framework contains many
standard data types that use it [108], as do common systems-level
libraries like GLib [98], libhunspell [100], and libgtk+2.0 [99].

Due to its prominence, GHUMVEE manually interposed offend-
ing hash functions with a custom, MVX-aware version, that re-
turned the leader variant’s hash results in all variants [29].



EuroSec’25, March 30-April 3 2025, Rotterdam, Netherlands Anton Schelfhout, Adriaan Jacobs, Jonas Vinck, and Stijn Volckaert

C4 Address-dependent iteration order.Many programs contain
sorted collections of pointers or address-related data, including the
hash map case previously mentioned. The iteration order over these
collections is entirely determined by the pointer values, which are
likely different in the diversified variants. This can make them ex-
ecute wildly different code, with different system calls, benignly.
Lidbury and Donaldson [82] mention that SQLite [109] and Spider-
Monkey [110] iterate through sorted containers of pointers, causing
issues for their record/replay mechanism. We also found many stan-
dard data types in LLVM that implement this pattern [108].

C5 Alignment. Some programs over-align pointers for perfor-
mance reasons or to satisfy the requirements of particular hard-
ware [111]. For instance, ptmalloc aligns new arenas on a 1MB
boundary [112]. To achieve this, it maps a 2MB region, finds a suit-
able 1MB-aligned pointer within it, and then unmaps the unneeded
pages at both ends, as illustrated in Figure 1. Because the variants
will only guarantee the 2MB region to be page-aligned, and its
base address is otherwise randomized, the 1MB-aligned address
will likely be found at different offsets in different variants. These
offsets are non-equivalent address-related data, which can later
cause divergences [80], e.g., in the ptmalloc example, where it is
used as an argument to the sys_munmap syscall.

Figure 1: Alignment in glibc’s ptmalloc implementation [80].

3.2 Challenges in ASB Neutralization
Control-Flow-Altering ASB. The alignment case (C5) already il-

lustrates a trivial pitfall of the approach that neutralizes ASB by
supplying variant-agnostic values to address-sensitive operations
(e.g., returning the leader variant’s hash results as a hash function’s
return value in all variants) [29]. Even if we can force the variants
to take the same control-flow path during the alignment check, e.g.,
by injecting one variant’s alignment result in all variants [29], the
offset of the 1MB-aligned pointer would be incorrect for some of
the variants, causing bugs down the line. In other programs, an
instruction requiring specific alignment may crash on unaligned
values [111], or simply cause performance degradation. In contrast,
GHUMVEE’s approach works flawlessly to neutralize all ASB in the
hash map case (C3) on numerous real-world programs. There, the
one-way nature of the hashing function gives ASB neutralization
the leeway to “lie” about the hash result with impunity since its re-
sult is never validated against the actual pointer value. Similarly, in
the container iteration case (C4), the iteration order typically does
not affect the program’s functionality; most programs primarily
use this pattern to efficiently obtain a unique set of pointers, which
happens to have an address-dependent order.

Evidently, some address-sensitive operations cause the program
to have more assumptions about the underlying pointer value than
others. We generally refer to these assumptions as the “feedback” of
the address-sensitive operation on the pointer value. More feedback
imposes more constraints on ASB neutralization and even variant
diversification because more properties about the variants’ pointers
have to match to ensure equivalent behavior. For instance, if the
variants’ 2MB buffers have to contain a 1MB-aligned address at the

same offset, their least significant 20 (!) bits must be equal, limiting
entropy to the remaining more significant bits.

This feedback remains unaccounted for in GHUMVEE’s patch-
ing solution, and likely requires semantic insight of application
developers to properly neutralize. But to do so, a second ASB issue
must be overcome. As described by Volckaert et al. in the past [29],
ASB tends to originate as minor control-flow divergences among
the variants, which then lead to increasingly divergent behavior
due to non-equivalent program state, after which all the variants
inevitably arrive at different system call invocations. At this point,
the MVXmonitor first becomes aware of the divergence, which may
have initially occurred in an entirely different part of the program,
and it becomes hard for application developers to track down the
original ASB-related cause.

Identifying the origin of ASB-induced divergences is, in itself,
an unsolved problem. The MVX monitor has no insight into the
structure or equivalence of the diversified variants’ data, frus-
trating diagnostic efforts. Worse yet, there may exist many more
address-sensitive operations in the program that do not lead to
MVX-observable divergences in the current software version, or on
the current input workload, but may well cause problems for newer
versions after a software update, requiring developers to repeat the
tedious diagnostic process.

Control-Flow-Preserving ASB. In more straightforward ASB cases,
such as C2, the ASB origin coincides with the system call diver-
gence, which helps to identify the ASB origin and potentially neu-
tralize ASB by injecting equivalent memory or register value into
all variants. However, manually refactoring or interposing these
locations still incurs a lot of developer effort, which may not scale
well to frequently changing code bases with third-party dependen-
cies [113]. In the case of unintentionally-diverging uninitialized
padding (C1), we could zero out the differing bytes, as implemented
by kMVX [40]. When the diverging bytes are intentional pointer
values, this risks causing bugs on the recipient side, e.g., when
communicating structured data through socket calls in X11 (C2).

Ideally, the MVX monitor would automatically be able to recog-
nize untyped address-related data in the syscall arguments, verify
it for equivalence between the variants, and allow execution to con-
tinue if safe. In Section 4.1, we present a neutralization approach
that successfully implements this idea.

4 Diagnosing ASB: Variant Diffing
Data layout diversification complements code layout diversifica-
tion in existing MVX systems [32] to complete the memory layout
diversification picture. Under Disjoint Memory Layouts (DML), the
variants contain the same set of memory objects at disjoint loca-
tions. This means that (i) every object in the leader variant will have
an equivalent object in the followers, and (ii) the storage address
range for these equivalent objects is guaranteed not to overlap
with the range of the leader object. Throughout this section, we
consider two memory objects equivalent if they are semantically
the same object, but they are not byte-for-byte identical. Without
ASB, and assuming that the MVX system neutralizes other sources
of non-determinism [28, 47, 94], the in-memory representation of
equivalent objects only differs when they contain pointers.



Diagnosing and Neutralizing Address-Sensitive Behavior in Multi-Variant Execution Systems EuroSec’25, March 30-April 3 2025, Rotterdam, Netherlands

Figure 2: Equivalent objects containing unequal but equiva-
lent pointers in two variants.

With ASB, however, there might be other differences between
equivalent objects. We find that a variant diff that iterates over all
equivalent objects and that examines their differences can prove use-
ful in detecting ASB. Differing bytes that do not represent pointer
values represent the effects of address-dependent operations that,
if caught early enough, can help us understand the source of ASB-
induced divergences (see Section 4.2). Similarly, differing bytes that
do represent equivalent pointer values can help us distinguish be-
tween legitimate pointers that refer to equivalent objects, versus
the effects of attacks that maliciously leak pointer values to defeat
the MVX system’s diversification [34].

To evaluate the potential benefits of variant diffing, we imple-
mented the technique inside the ReMon MVX system [32], adding
1998 LoC. ReMon offers the support to run complex applications [47,
94] and already neutralizes most sources of non-determinism [28,
29]. We implemented Disjoint Memory Layouts (DML) by extend-
ing ReMon’s Disjoint Code Layouts (DCL) infrastructure [31]. With
our extension, ReMon returns non-overlapping address ranges for
all sys_mmap and sys_brk calls executed by the variants. Unless
otherwise specified, we did not apply additional fine-grained object-
level layout diversification, such as random inter-object padding or
shuffling [26, 34]. DML suffices to generate unequal addresses for
equivalent objects, which allows the variant diff to work.

Tracking equivalent objects. To compare equivalent objects, we
must keep track of their location across the different variants. In
our implementation, this is trivial for global and stack objects, since
ReMon only diversifies the base addresses of their respective mem-
ory regions, but does not shuffle or pad individual objects. We treat
these static regions as if they are a single, large object. Under more
fine-grained diversification, the MVX monitor should be informed
of the diversification seed [26] or the locations of equivalent ob-
jects in these regions, which can reasonably be expected when
diversification is applied in the compiler or program loader [44].

For the heap, we implemented much more fine-grained tracking
of individual object boundaries by forcing the variants to use a cus-
tom memory allocator we implemented based on mimalloc [114],
adding 300 LoC. This custom memory allocator executes a new
hypercall, register_obj. The hypercall synchronizes the variants,
verifies that they are in equivalent states, and returns a unique
Equivalent Object ID for the new allocation. Our underlying pre-
supposition is that non-diverged variants allocate equivalent objects
with the same size, in the same order. Within each variant, our cus-
tom allocator keeps track of the object ID and the boundaries of
each object. The allocator also makes the ID-to-boundary mapping
available to the monitor so that it can easily locate and compare
equivalent objects while performing the variant diff.

To catch ASB-induced divergences as early as possible, we per-
form an equivalence check on the synchronized register_obj call,
where we compare not just the hypercall arguments but also the in-
vocation context based on a stack trace we generate for each variant.

This helps us avoid situations where ASB leads to undetected but
non-equivalent allocation behavior in the variants, which would
cause the variants to track non-equivalent objects under the same
ID, and cause noise in the variant diff. Finally, to avoid differing
bytes due to uninitialized data (cfr. Section 3.1), we ensure that all
memory returned by the heap allocator is properly zeroed out [104].

Discovering pointers. As shown in Figure 2, pointers appear as
unequal parts of otherwise byte-for-byte identical objects. However,
they do not necessarily appear at aligned locations [115], and not all
64 bits are necessarily unequal. Hence, for every diverging byte, we
check with any eight-byte sliding window containing this diverging
byte if the window translates to an equivalent address in all variants.

4.1 Detecting Untyped Pointers in Arguments
The variant diff enables us to reliably discover address-related data
in the program, which directly helps to solve the primary issue
in distinguishing benign from malicious system calls in case C2,
where the variants’ control flow has not diverged, but the contents
of their buffer arguments to a system call like write still differ.

We have implemented a prototype solution that performs a par-
tial variant diff, only on the offending buffer arguments of syscalls
that would otherwise cause a shutdown. We scan differing buffers
for pointers, again using the eight-byte window on differing bytes.
If we detect equivalent pointers, i.e., pointers to equivalent objects,
at the same offset in all buffers, we can be sure that the programmer
intended to place specific pointer data in the buffer, and we can
allow the system call to continue. To exploit this leniency, attackers
would have to discover and place equivalent pointer values in the
same location in both variants, which would mean they defeated
the MVX’ diversification and replication already.

To handle the common debugging and error logging practice of
printing out pointer values, we pragmatically attempt to interpret
differing bytes as hexademical string representations of pointers
too, which we then check for equivalence.

If none of these attempts work to explain the differing bytes
as benign ASB, we still assume the divergence is malicious and
terminate the program. From our experiments, we expect that the
current prototype suffices to handle most similar cases of pointer
data in untyped buffer arguments to syscalls. However, most impor-
tantly, the partial variant diff gives future work the tools to handle
new cases, should they come up.

4.2 Finding ASB Origins at Divergences
The most common case of MVX-defeating ASB manifests when
the variants take different control-flow paths after an address-
dependent conditional evaluation, e.g., whether to grow hash map
storage [80], or the order in which they iterate over a sorted con-
tainer of pointers [82]. In this case, the variants may perform non-
equivalent system calls, which are observed as a divergence by the
MVX monitor, which then terminates execution. To better under-
stand the presence of address-dependent values in the variants’
address spaces, we perform a complete diff of the variants’ address
spaces before they terminate, recursively comparing equivalent
objects and collecting the observed divergences, i.e., unequal object
contents that do not represent pointers to equivalent objects.



EuroSec’25, March 30-April 3 2025, Rotterdam, Netherlands Anton Schelfhout, Adriaan Jacobs, Jonas Vinck, and Stijn Volckaert

We ran our tool on an Intel(R) Xeon(R) Silver 4214 CPU @
2.20GHz with 64 GiB DDR4 RAM. The machine runs Ubuntu 20.04
LTS with Linux kernel version 5.15.0. We tested 13 C programs in
the SPEC CPU2006 [84] suite and found that two of the benchmarks
diverged due to ASB: 403.gcc and 456.hmmer showed divergent
allocation behavior among the variants. We manually confirmed
in the source code that both originated from address-sensitive op-
erations, 403.gcc due to a case similar to pointer hashing (C3),
and 456.hmmer due to pointer alignment, which later resulted in
both variants requesting different amounts of extra memory. How-
ever, 456.hmmer only caused an observable divergence on our own
register_obj hypercall, meaning that, even though the allocation
behavior technically diverges, it usually goes unnoticed. Catching
it early gives us a better insight into where ASB first alters control
flow. This slight divergence is crucially important to detect for the
functionality of the variant diff, as we require fully equivalent allo-
cation behavior to correctly link allocations in different variants
together. This highlights a dual purpose in our checking off allo-
cation behavior through register_obj: keeping the variant diff
correct and catching divergences due to ASB early.

Figure 3: Result of variant diff on SPEC CPU2006 suite.

However, our goal reaches beyond detecting system call diver-
gences due to ASB, which MVX systems already do inadvertently.
Our variant diffing mechanism also allows us to detect ASB that
did not cause MVX-observable divergences but may still do so in
the future after software updates or different inputs. We conducted
an experiment where we ran the diff when the variants terminated.
We labeled all of the variant’s equivalent allocations as either equal
when they were byte-for-byte identical, equivalent when they dif-
fered only because they contained equivalent pointers, and unequal
when they differed for another reason. Figure 3 shows what per-
centage of allocations for each benchmark falls into which category.

We see that the vast majority of allocations are either equal or
equivalent. 403.gcc terminates rather quickly due to the diver-
gence, likely explaining why only a small percentage of allocations,
0.53%, are unequal. On the other hand, 456.hmmer shows a much
higher percentage, suggesting that non-crashing ASB runs ram-
pant before finally triggering a divergence. In all other benchmarks,
though they did not show divergences, we still observe some un-
equal allocations, which could lead to detectable divergences as the
codebase evolves. With the granularity of the variant diff as it is, we
cannot determine where or when these allocations became unequal.
Still, we can show where these allocations were first made using
the backtrace from when they were made. This gives developers
valuable insights into which objects are influenced by ASB.

Our study leads us to believe that (i) many ASB-divergences
are caused by a single code construct, and (ii) ASB is very rarely

an intended program construct for performance or other reasons.
As a result, we believe that it might be possible to remove ASB
through (limited) refactoring without substantially changing the
application’s semantics or performance characteristics.

5 Discussion and Future Work
Enforcing a program’s determinism with respect to its memory lay-
out naturally has benefits beyondMVX systems alone, as mentioned
in Section 3. In addition, we expect that our variant diffing tech-
nique could also be of interest to other application domains. Being
able to locate pointers in memory images of arbitrary systems-level
programs precisely is an extremely coveted ability in itself, pur-
sued by a plethora of previous work for a wide variety of reasons,
such as dangling pointer nullification [66, 116–121], garbage collec-
tion [115, 122], online program re-randomization [123–126], and
reverse engineering [127, 128], among others [129–132]. In the past,
previous work relied on heuristics [115, 122], compiler [66, 129, 130]
and even hardware support [131] to distinguish pointers from other
program data. We can see how MVX systems could provide such
info as a simple byproduct of redundant execution and memory lay-
out diversification. However, a high-quality variant diff would still
require all ASB to be neutralized in the variants, to ensure that dif-
fering bytes in equivalent objects are faithfully pointer values, and
not second-degree effects of earlier address-sensitive operations.

Our current variant diffing implementation prioritizes effective-
ness over run-time efficiency, since we primarily aim to sanitize
programs for ASB issues. The largest source of overhead are the
variant synchronization points at every heap allocation. In ASB-
free programs, we could relax these restrictions to speed up the
equivalent object tracking. However, computing the variant diff
will still be costly; variants must be in equivalent stopped states,
and both variants’ process images must still be parsed. Future work
could explore whether the variant’s inherent parallelism [33, 133],
or asynchronous scanning techniques from the garbage collection
world [134], can help generate efficient variant diffs.

6 Conclusion
In this paper, we explored the challenges that Address-Sensitive
Behavior (ASB) poses for data layout diversification within MVX
systems. We examined various real-world examples of ASB and
formulated challenges for solvingASB based on their characteristics.
This study uncovered shortcomings of existing solutions as well
as new insights. We introduced a novel technique called variant
diffing, which enables automatic analysis of the memory layout
across diversified variants in MVX. We have developed a diagnostic
tool based on variant diffing and integrated it into the advanced
MVX framework, ReMon. Additionally, we proposed an automatic
neutralization strategy that can distinguish between benign and
malicious divergences for control-flow preserving ASB.

Acknowledgments
We thank the anonymous reviewers and our shepherd for their
helpful feedback. This research is partially funded by the Research
Fund KU Leuven, and by the Cybersecurity Research Program
Flanders. We thank D. Poetzsch-Heffter, T. Bourguenolle, P. Larsen,
and M. Franz for running ASB experiments.



Diagnosing and Neutralizing Address-Sensitive Behavior in Multi-Variant Execution Systems EuroSec’25, March 30-April 3 2025, Rotterdam, Netherlands

References
[1] László Szekeres, Mathias Payer, Tao Wei, and Dawn Song. Sok: Eternal war in

memory. In 2013 IEEE Symposium on Security and Privacy, pages 48–62, 2013.
doi: 10.1109/SP.2013.13.

[2] Victor Van der Veen, Nitish Dutt-Sharma, Lorenzo Cavallaro, and Herbert Bos.
Memory errors: The past, the present, and the future. In Research in Attacks,
Intrusions, and Defenses: 15th International Symposium, RAID 2012, Amsterdam,
The Netherlands, September 12-14, 2012. Proceedings 15, pages 86–106. Springer,
2012.

[3] Eugene H. Spafford. The internet worm program: an analysis. SIGCOMM
Comput. Commun. Rev., 19(1):17–57, jan 1989. ISSN 0146-4833. doi: 10.1145/
66093.66095. URL https://doi.org/10.1145/66093.66095.

[4] CVE-2020-10713. Available from MITRE, CVE-ID CVE-2020-10713., 2020. URL
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-10713.

[5] CVE-2023-0179. Available from MITRE, CVE-ID CVE-2023-0179., 2023. URL
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-0179.

[6] CVE-2019-13720. Available from MITRE, CVE-ID CVE-2019-13720., 2019. URL
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-13720.

[7] CVE-2014-0160. Available from MITRE, CVE-ID CVE-2014-0160., 2014. URL
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160.

[8] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitry
Vyukov. Addresssanitizer: A fast address sanity checker. In Proceedings of
the 2012 USENIX Conference on Annual Technical Conference, USENIX ATC’12,
page 28, USA, 2012. USENIX Association.

[9] Floris Gorter, Enrico Barberis, Raphael Isemann, Erik van der Kouwe, Cristiano
Giuffrida, and Herbert Bos. FloatZone: Accelerating memory error detection
using the floating point unit. In 32nd USENIX Security Symposium (USENIX Secu-
rity 23), pages 805–822, Anaheim, CA, August 2023. USENIX Association. ISBN
978-1-939133-37-3. URL https://www.usenix.org/conference/usenixsecurity23/
presentation/gorter.

[10] Dokyung Song, Julian Lettner, Prabhu Rajasekaran, Yeoul Na, Stijn Volckaert, Per
Larsen, and Michael Franz. Sok: Sanitizing for security. In 2019 IEEE Symposium
on Security and Privacy (S&P), pages 1275–1295, 2019. doi: 10.1109/SP.2019.00010.

[11] Yuseok Jeon, WookHyun Han, Nathan Burow, and Mathias Payer. FuZZan:
Efficient sanitizer metadata design for fuzzing. In 2020 USENIX Annual Tech-
nical Conference (USENIX ATC 20), pages 249–263. USENIX Association, July
2020. ISBN 978-1-939133-14-4. URL https://www.usenix.org/conference/atc20/
presentation/jeon.

[12] Kostya Serebryany. OSS-Fuzz - google’s continuous fuzzing service for open
source software. Vancouver, BC, August 2017. USENIX Association.

[13] Jeff Vander Stoep. Memory safe languages in android 13. https://security.
googleblog.com/2022/12/memory-safe-languages-in-android-13.html, 2022.

[14] Jeff Vander Stoep and Stephen Hines. Rust in the android platform. https:
//security.googleblog.com/2021/04/rust-in-android-platform.html, 2021.

[15] Jaemin Hong and Sukyoung Ryu. Concrat: An automatic c-to-rust lock
api translator for concurrent programs. In 2023 IEEE/ACM 45th Interna-
tional Conference on Software Engineering (ICSE), pages 716–728, 2023. doi:
10.1109/ICSE48619.2023.00069.

[16] Hanliang Zhang, Cristina David, Yijun Yu, and Meng Wang. Ownership guided
c to rust translation. In International Conference on Computer Aided Verification,
pages 459–482. Springer, 2023.

[17] Mehmet Emre, Peter Boyland, Aesha Parekh, Ryan Schroeder, Kyle Dewey, and
Ben Hardekopf. Aliasing limits on translating c to safe rust. 7(OOPSLA1), April
2023. doi: 10.1145/3586046. URL https://doi.org/10.1145/3586046.

[18] Ben Hawkes. News and updates from the project zero team at google. https:
//googleprojectzero.blogspot.com/p/0day.html, 2019.

[19] Santosh Nagarakatte, Milo M. K. Martin, and Steve Zdancewic. Everything
You Want to Know About Pointer-Based Checking. In 1st Summit on Advances
in Programming Languages (SNAPL 2015), volume 32 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 190–208, Dagstuhl, Germany, 2015.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik. ISBN 978-3-939897-80-4.
doi: 10.4230/LIPIcs.SNAPL.2015.190. URL https://drops.dagstuhl.de/entities/
document/10.4230/LIPIcs.SNAPL.2015.190.

[20] Gregory J. Duck and Roland H. C. Yap. Heap bounds protection with low fat
pointers. CC ’16, page 132–142, New York, NY, USA, 2016. Association for
Computing Machinery. ISBN 9781450342414. doi: 10.1145/2892208.2892212.
URL https://doi.org/10.1145/2892208.2892212.

[21] Martín Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. Control-flow
integrity principles, implementations, and applications. ACM Transactions on
Information and System Security (TISSEC), 13(1):1–40, 2009.

[22] Volodymyr Kuznetsov, Laszlo Szekeres, Mathias Payer, George Candea, R Sekar,
and Dawn Song. {Code-Pointer} integrity. In 11th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 14), pages 147–163, 2014.

[23] Miguel Castro, Manuel Costa, and Tim Harris. Securing software by enforcing
data-flow integrity. In 7th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 06), Seattle, WA, November 2006. USENIX Association.
URL https://www.usenix.org/conference/osdi-06/securing-software-enforcing-

data-flow-integrity.
[24] Sandeep Bhatkar and R. Sekar. Data space randomization. In Proceedings

of the 5th International Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment, DIMVA ’08, page 1–22, Berlin, Heidelberg, 2008.
Springer-Verlag. ISBN 9783540705413. doi: 10.1007/978-3-540-70542-0_1. URL
https://doi.org/10.1007/978-3-540-70542-0_1.

[25] Benjamin Cox, David Evans, Adrian Filipi, Jonathan Rowanhill, Wei Hu, Jack
Davidson, John Knight, Anh Nguyen-Tuong, and Jason Hiser. N-variant systems:
A secretless framework for security through diversity. In USENIX Security
Symposium, 2006.

[26] Emery D. Berger and Benjamin G. Zorn. Diehard: Probabilistic memory safety
for unsafe languages. SIGPLAN notices, 41(6):158–168, 2006. ISSN 0362-1340.

[27] Danilo Bruschi, Lorenzo Cavallaro, and Andrea Lanzi. Diversified process
replicæ for defeating memory error exploits. In IEEE Performance, Computing,
and Communications Conference (IPCCC), 2007.

[28] Babak Salamat, Todd Jackson, Andreas Gal, and Michael Franz. Orchestra:
intrusion detection using parallel execution and monitoring of program variants
in user-space. In Proceedings of the 4th ACM European Conference on Computer
Systems, EuroSys ’09, page 33–46, New York, NY, USA, 2009. Association for
Computing Machinery. ISBN 9781605584829. doi: 10.1145/1519065.1519071.

[29] Stijn Volckaert, Bjorn De Sutter, Tim De Baets, and Koen De Bosschere.
Ghumvee: efficient, effective, and flexible replication. In Foundations and Prac-
tice of Security: 5th International Symposium, FPS 2012, Montreal, QC, Canada,
October 25-26, 2012, Revised Selected Papers 5, pages 261–277. Springer, 2013.

[30] Koen Koning, Herbert Bos, and Cristiano Giuffrida. Secure and efficient multi-
variant execution using hardware-assisted process virtualization. In IEEE/IFIP
Conference on Dependable Systems and Networks (DSN), 2016.

[31] Stijn Volckaert, Bart Coppens, and Bjorn De Sutter. Cloning your gadgets:
Complete ROP attack immunity with multi-variant execution. IEEE Transactions
on Dependable and Secure Computing (TDSC), 2016.

[32] Stijn Volckaert, Bart Coppens, Alexios Voulimeneas, Andrei Homescu, Per
Larsen, Bjorn De Sutter, andMichael Franz. Secure and efficient applicationmon-
itoring and replication. In 2016 USENIX Annual Technical Conference (USENIX
ATC 16), pages 167–179, Denver, CO, June 2016. USENIX Association. ISBN
978-1-931971-30-0. URL https://www.usenix.org/conference/atc16/technical-
sessions/presentation/volckaert.

[33] Meng Xu, Kangjie Lu, Taesoo Kim, and Wenke Lee. Bunshin: compositing
security mechanisms through diversification. In Proceedings of the USENIX
Annual Technical Conference (ATC), 2017.

[34] Kangjie Lu, Meng Xu, Chengyu Song, Taesoo Kim, and Wenke Lee. Stop-
ping memory disclosures via diversification and replicated execution. IEEE
Transactions on Dependable and Secure Computing, 18(1):160–173, 2021. doi:
10.1109/TDSC.2018.2878234.

[35] Petr Hosek and Cristian Cadar. Safe software updates via multi-version exe-
cution. In Proceedings of the International Conference on Software Engineering
(ICSE), 2013.

[36] Petr Hosek and Cristian Cadar. Varan the unbelievable: An efficient n-version
execution framework. In Proceedings of the International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (ASPLOS),
2015.

[37] MatthewMaurer andDavid Brumley. TACHYON: Tandem execution for efficient
live patch testing. In Proceedings of the USENIX Security Symposium, 2012.

[38] Dohyeong Kim, Yonghwi Kwon, William N Sumner, Xiangyu Zhang, and
Dongyan Xu. Dual execution for on the fly fine grained execution compari-
son. In Proceedings of the International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2015.

[39] Yonghwi Kwon, Dohyeong Kim, William Nick Sumner, Kyungtae Kim, Brendan
Saltaformaggio, Xiangyu Zhang, and Dongyan Xu. LDX: Causality inference
by lightweight dual execution. In Proceedings of the International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), 2016.

[40] Sebastian Österlund, Koen Koning, Pierre Olivier, Antonio Barbalace, Herbert
Bos, and Cristiano Giuffrida. kMVX: Detecting kernel information leaks with
multi-variant execution. In Proceedings of the International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (ASPLOS),
2019.

[41] Alexios Voulimeneas, Dokyung Song, Per Larsen, Michael Franz, and Stijn
Volckaert. dmvx: Secure and efficient multi-variant execution in a distributed
setting. In Proceedings of the 14th European Workshop on Systems Security,
EuroSec ’21, page 41–47, New York, NY, USA, 2021. Association for Computing
Machinery. ISBN 9781450383370. doi: 10.1145/3447852.3458714. URL https:
//doi.org/10.1145/3447852.3458714.

[42] Xiaoguang Wang, SengMing Yeoh, Robert Lyerly, Pierre Olivier, Sang-Hoon
Kim, and Binoy Ravindran. A framework for software diversification with ISA
heterogeneity. In International Symposium on Research in Attacks, Intrusions
and Defenses (RAID), 2020.

[43] Michael Franz. E unibus pluram: massive-scale software diversity as a defense
mechanism. In Proceedings of the 2010 New Security Paradigms Workshop, NSPW

https://doi.org/10.1145/66093.66095
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-10713
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-0179
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-13720
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160
https://www.usenix.org/conference/usenixsecurity23/presentation/gorter
https://www.usenix.org/conference/usenixsecurity23/presentation/gorter
https://www.usenix.org/conference/atc20/presentation/jeon
https://www.usenix.org/conference/atc20/presentation/jeon
https://security.googleblog.com/2022/12/memory-safe-languages-in-android-13.html
https://security.googleblog.com/2022/12/memory-safe-languages-in-android-13.html
https://security.googleblog.com/2021/04/rust-in-android-platform.html
https://security.googleblog.com/2021/04/rust-in-android-platform.html
https://doi.org/10.1145/3586046
https://googleprojectzero.blogspot.com/p/0day.html
https://googleprojectzero.blogspot.com/p/0day.html
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SNAPL.2015.190
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SNAPL.2015.190
https://doi.org/10.1145/2892208.2892212
https://www.usenix.org/conference/osdi-06/securing-software-enforcing-data-flow-integrity
https://www.usenix.org/conference/osdi-06/securing-software-enforcing-data-flow-integrity
https://doi.org/10.1007/978-3-540-70542-0_1
https://www.usenix.org/conference/atc16/technical-sessions/presentation/volckaert
https://www.usenix.org/conference/atc16/technical-sessions/presentation/volckaert
https://doi.org/10.1145/3447852.3458714
https://doi.org/10.1145/3447852.3458714


EuroSec’25, March 30-April 3 2025, Rotterdam, Netherlands Anton Schelfhout, Adriaan Jacobs, Jonas Vinck, and Stijn Volckaert

’10, page 7–16, New York, NY, USA, 2010. Association for Computing Machinery.
ISBN 9781450304153. doi: 10.1145/1900546.1900550. URL https://doi.org/10.
1145/1900546.1900550.

[44] Per Larsen, Andrei Homescu, Stefan Brunthaler, and Michael Franz. Sok: Au-
tomated software diversity. In 2014 IEEE Symposium on Security and Privacy,
pages 276–291. IEEE, 2014. ISBN 1479946869.

[45] Adriaan Jacobs and Stijn Volckaert. Not quite write: On the effectiveness of
Store-Only bounds checking. In 18th USENIX WOOT Conference on Offensive
Technologies (WOOT 24), pages 171–187, Philadelphia, PA, August 2024. USENIX
Association. ISBN 978-1-939133-43-4. URL https://www.usenix.org/conference/
woot24/presentation/jacobs.

[46] Jonas Wagner, Volodymyr Kuznetsov, George Candea, and Johannes Kinder.
High system-code security with low overhead. In 2015 IEEE Symposium on
Security and Privacy, pages 866–879. IEEE, 2015.

[47] Jonas Vinck, Bert Abrath, Bart Coppens, Alexios Voulimeneas, Bjorn De Sutter,
and Stijn Volckaert. Sharing is caring: Secure and efficient shared memory
support for mvees. In Proceedings of the Seventeenth European Conference on
Computer Systems, pages 99–116, 2022.

[48] Karl Rupp. 42 years of microprocessor trend data, February 2018. URL https:
//www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/.

[49] Chengyu Song, Byoungyoung Lee, Kangjie Lu, William Harris, Taesoo Kim, and
Wenke Lee. Enforcing kernel security invariants with data flow integrity. In
NDSS, 2016.

[50] Zhichuang Sun, Bo Feng, Long Lu, and Somesh Jha. Oat: Attesting operation
integrity of embedded devices. In 2020 IEEE Symposium on Security and Privacy
(SP), pages 1433–1449. IEEE, 2020.

[51] Juhee Kim, Jinbum Park, Yoochan Lee, Chengyu Song, Taesoo Kim, and By-
oungyoung Lee. Petal: Ensuring access control integrity against data-only
attacks on linux. In Proceedings of the 2024 on ACM SIGSAC Conference on
Computer and Communications Security, pages 2919–2933, 2024.

[52] Jinmeng Zhou, Jiayi Hu, Ziyue Pan, Jiaxun Zhu, Wenbo Shen, Guoren Li, and
Zhiyun Qian. Beyond control: Exploring novel file system objects for data-only
attacks on linux systems. arXiv preprint arXiv:2401.17618, 2024.

[53] Salman Ahmed, Hans Liljestrand, Hani Jamjoom, Matthew Hicks, N Asokan,
and Danfeng Daphne Yao. Not all data are created equal: Data and pointer
prioritization for scalable protection against {Data-Oriented} attacks. In 32nd
USENIX Security Symposium (USENIX Security 23), pages 1433–1450, 2023.

[54] Munir Geden and Kasper Rasmussen. Truvin: Lightweight detection of data
oriented attacks through trusted value integrity. In 2020 IEEE 19th International
Conference on Trust, Security and Privacy in Computing and Communications
(TrustCom), pages 174–181, 2020. doi: 10.1109/TrustCom50675.2020.00035.

[55] Hengkai Ye, Song Liu, Zhechang Zhang, and Hong Hu. {VIPER}: Spotting
{Syscall-Guard} variables for {Data-Only} attacks. In 32nd USENIX Security
Symposium (USENIX Security 23), pages 1397–1414, 2023.

[56] Hong Hu, Zheng Leong Chua, Sendroiu Adrian, Prateek Saxena, and Zhenkai
Liang. Automatic generation of {Data-Oriented} exploits. In 24th USENIX
Security Symposium (USENIX Security 15), pages 177–192, 2015.

[57] Hong Hu, Shweta Shinde, Sendroiu Adrian, Zheng Leong Chua, Prateek Saxena,
and Zhenkai Liang. Data-oriented programming: On the expressiveness of
non-control data attacks. In 2016 IEEE Symposium on Security and Privacy (SP),
pages 969–986, 2016. doi: 10.1109/SP.2016.62.

[58] Kyriakos K Ispoglou, Bader AlBassam, Trent Jaeger, and Mathias Payer. Block
oriented programming: Automating data-only attacks. In Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communications Security, pages
1868–1882, 2018.

[59] Shuo Chen, Jun Xu, Emre Can Sezer, Prachi Gauriar, and Ravishankar K Iyer.
Non-control-data attacks are realistic threats. In USENIX security symposium,
volume 5, page 146, 2005.

[60] Brian Johannesmeyer, Asia Slowinska, Herbert Bos, and Cristiano Giuffrida.
Practical {Data-Only} attack generation. In 33rd USENIX Security Symposium
(USENIX Security 24), pages 1401–1418, 2024.

[61] Zhenpeng Lin, Yuhang Wu, and Xinyu Xing. Dirtycred: Escalating privilege in
linux kernel. In Proceedings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’22, page 1963–1976, New York, NY, USA,
2022. Association for Computing Machinery. ISBN 9781450394505. doi: 10.1145/
3548606.3560585. URL https://doi.org/10.1145/3548606.3560585.

[62] Anit Anubhav and Manish Sardiwal. The journey and evolution of god mode in
2016: Cve-2016-0189, 2017. URL https://www.virusbulletin.com/virusbulletin/
2017/01/journey-and-evolution-god-mode-2016-cve-2016-0189/.

[63] Xuancheng Jin, Xuangan Xiao, Songlin Jia, Wang Gao, Dawu Gu, Hang Zhang,
Siqi Ma, Zhiyun Qian, and Juanru Li. Annotating, tracking, and protecting
cryptographic secrets with cryptompk. In 2022 IEEE Symposium on Security and
Privacy (SP), pages 650–665. IEEE, 2022.

[64] Tapti Palit, Jarin Firose Moon, Fabian Monrose, and Michalis Polychronakis.
Dynpta: Combining static and dynamic analysis for practical selective data
protection. In 2021 IEEE Symposium on Security and Privacy (SP), pages 1919–
1937. IEEE, 2021.

[65] Taddeus Kroes, Koen Koning, Erik van der Kouwe, Herbert Bos, and Cristiano
Giuffrida. Delta pointers: Buffer overflow checks without the checks. In Pro-
ceedings of the Thirteenth EuroSys Conference, pages 1–14, 2018.

[66] Zhenpeng Lin, Zheng Yu, Ziyi Guo, Simone Campanoni, Peter Dinda, and
Xinyu Xing. CAMP: Compiler and allocator-based heap memory protection.
In 33rd USENIX Security Symposium (USENIX Security 24), pages 4015–4032,
Philadelphia, PA, August 2024. USENIX Association. ISBN 978-1-939133-44-
1. URL https://www.usenix.org/conference/usenixsecurity24/presentation/lin-
zhenpeng.

[67] Zheng Yu, Ganxiang Yang, and Xinyu Xing. ShadowBound: Efficient heap
memory protection through advanced metadata management and customized
compiler optimization. In 33rd USENIX Security Symposium (USENIX Security
24), pages 7177–7193, Philadelphia, PA, August 2024. USENIX Association. ISBN
978-1-939133-44-1. URL https://www.usenix.org/conference/usenixsecurity24/
presentation/yu-zheng.

[68] Amogha Udupa Shankaranarayana Gopal, Raveendra Soori, Michael Ferdman,
and Dongyoon Lee. TAILCHECK: A lightweight heap overflow detection mech-
anism with page protection and tagged pointers. In 17th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 23), pages 535–552,
Boston, MA, July 2023. USENIX Association. ISBN 978-1-939133-34-2. URL
https://www.usenix.org/conference/osdi23/presentation/gopal.

[69] Yuan Li, Wende Tan, Zhizheng Lv, Songtao Yang, Mathias Payer, Ying Liu, and
Chao Zhang. Pacmem: Enforcing spatial and temporal memory safety via arm
pointer authentication. In Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’22, page 1901–1915, New York,
NY, USA, 2022. Association for Computing Machinery. ISBN 9781450394505.
doi: 10.1145/3548606.3560598. URL https://doi.org/10.1145/3548606.3560598.

[70] Nathan Burow, Derrick McKee, Scott A Carr, and Mathias Payer. Cup: Com-
prehensive user-space protection for c/c++. In Proceedings of the 2018 on Asia
Conference on Computer and Communications Security, pages 381–392, 2018.

[71] Piyus Kedia, Rahul Purandare, Udit Agarwal, and Rishabh. Cguard: Scalable and
precise object bounds protection for c. In Proceedings of the 32nd ACM SIGSOFT
International Symposium on Software Testing and Analysis, pages 1307–1318,
2023.

[72] Yiyu Zhang, Tianyi Liu, Zewen Sun, Zhe Chen, Xuandong Li, and Zhiqiang Zuo.
Catamaran: Low-overhead memory safety enforcement via parallel acceleration.
In Proceedings of the 32nd ACM SIGSOFT International Symposium on Software
Testing and Analysis, pages 816–828, 2023.

[73] Jiwon Seo, Junseung You, Donghyun Kwon, Yeongpil Cho, and Yunheung Paek.
Zometag: Zone-based memory tagging for fast, deterministic detection of spatial
memory violations on arm. IEEE Transactions on Information Forensics and
Security, 2023.

[74] Myoung Jin Nam, Periklis Akritidis, and David J Greaves. Framer: a tagged-
pointer capability system with memory safety applications. In Proceedings of
the 35th Annual Computer Security Applications Conference, pages 612–626, 2019.

[75] Floris Gorter, Taddeus Kroes, Herbert Bos, and Cristiano Giuffrida. Sticky tags:
Efficient and deterministic spatial memory error mitigation using persistent
memory tags. In 2024 IEEE Symposium on Security and Privacy (SP), pages
217–217. IEEE Computer Society, 2024.

[76] Scott A Carr and Mathias Payer. Datashield: Configurable data confidentiality
and integrity. In Proceedings of the 2017 ACM on Asia Conference on Computer
and Communications Security, pages 193–204, 2017.

[77] Sharjeel Khan, Bodhisatwa Chatterjee, and Santosh Pande. Pythia: Compiler-
guided defense against non-control data attacks. In Proceedings of the 29th ACM
International Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 3, pages 850–866, 2024.

[78] Christopher Jelesnianski, Mohannad Ismail, Yeongjin Jang, Dan Williams, and
ChangwooMin. Protect the system call, protect (most of) the world with bastion.
In Proceedings of the 28th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, Volume 3, pages 528–541,
2023.

[79] Alexios Voulimeneas, Dokyung Song, Fabian Parzefall, Yeoul Na, Per Larsen,
Michael Franz, and Stijn Volckaert. Distributed heterogeneous n-variant execu-
tion. In Proceedings of the Conference on Detection of Intrusions and Malware &
Vulnerability Assessment (DIMVA), 2020.

[80] Stijn Volckaert. Advanced Techniques for multi-variant execution. PhD thesis,
Ghent University, 2015.

[81] Rick Hoskinson. Determinism in league of legends: Fixing diver-
gences. https://technology.riotgames.com/news/determinism-league-legends-
fixing-divergences, 2018.

[82] Christopher Lidbury and Alastair F. Donaldson. Sparse record and replay with
controlled scheduling. In Proceedings of the 40th ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 576–593, New York,
NY, USA, 2019. ACM. ISBN 1450367127.

[83] Daniel Schemmel, Julian Büning, Frank Busse, Martin Nowack, and Cristian
Cadar. Kdalloc: The klee deterministic allocator: Deterministic memory alloca-
tion during symbolic execution and test case replay. In Proceedings of the 32nd
ACM SIGSOFT International Symposium on Software Testing and Analysis, ISSTA

https://doi.org/10.1145/1900546.1900550
https://doi.org/10.1145/1900546.1900550
https://www.usenix.org/conference/woot24/presentation/jacobs
https://www.usenix.org/conference/woot24/presentation/jacobs
https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/
https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/
https://doi.org/10.1145/3548606.3560585
https://www.virusbulletin.com/virusbulletin/2017/01/journey-and-evolution-god-mode-2016-cve-2016-0189/
https://www.virusbulletin.com/virusbulletin/2017/01/journey-and-evolution-god-mode-2016-cve-2016-0189/
https://www.usenix.org/conference/usenixsecurity24/presentation/lin-zhenpeng
https://www.usenix.org/conference/usenixsecurity24/presentation/lin-zhenpeng
https://www.usenix.org/conference/usenixsecurity24/presentation/yu-zheng
https://www.usenix.org/conference/usenixsecurity24/presentation/yu-zheng
https://www.usenix.org/conference/osdi23/presentation/gopal
https://doi.org/10.1145/3548606.3560598
https://technology.riotgames.com/news/determinism-league-legends-fixing-divergences
https://technology.riotgames.com/news/determinism-league-legends-fixing-divergences


Diagnosing and Neutralizing Address-Sensitive Behavior in Multi-Variant Execution Systems EuroSec’25, March 30-April 3 2025, Rotterdam, Netherlands

2023, page 1491–1494, New York, NY, USA, 2023. Association for Computing
Machinery. ISBN 9798400702211. doi: 10.1145/3597926.3604921.

[84] Standard Performance Evaluation Corporation. Spec cpu® 2006. https://www.
spec.org/cpu2006/, 2018.

[85] Babak Salamat, Andreas Gal, and Michael Franz. Reverse stack execution in a
multi-variant execution environment. InWorkshop on Compiler and Architectural
Techniques for Application Reliability and Security, pages 1–7, 2008.

[86] Enes Göktas, Benjamin Kollenda, Philipp Koppe, Erik Bosman, Georgios Portoka-
lidis, Thorsten Holz, Herbert Bos, and Cristiano Giuffrida. Position-independent
code reuse: On the effectiveness of aslr in the absence of information disclosure.
In 2018 IEEE European Symposium on Security and Privacy (EuroS&P), pages
227–242. IEEE, 2018.

[87] Long Cheng, Salman Ahmed, Hans Liljestrand, Thomas Nyman, Haipeng Cai,
Trent Jaeger, N. Asokan, and Danfeng (Daphne) Yao. Exploitation techniques
for data-oriented attacks with existing and potential defense approaches. ACM
Trans. Priv. Secur., 24(4), September 2021. ISSN 2471-2566. doi: 10.1145/3462699.
URL https://doi.org/10.1145/3462699.

[88] Jannik Pewny, Philipp Koppe, and Thorsten Holz. Steroids for doped appli-
cations: A compiler for automated data-oriented programming. In 2019 IEEE
European Symposium on Security and Privacy (EuroS&P), pages 111–126. IEEE,
2019.

[89] Robert Rudd, Richard Skowyra, David Bigelow, Veer Dedhia, Thomas Hobson,
Stephen Crane, Christopher Liebchen, Per Larsen, Lucas Davi, Michael Franz,
et al. Address oblivious code reuse: On the effectiveness of leakage resilient
diversity. In NDSS, 2017.

[90] Felix Berlakovich and Stefan Brunthaler. R2c: Aocr-resilient diversity with
reactive and reflective camouflage. In Proceedings of the Eighteenth European
Conference on Computer Systems, pages 488–504, 2023.

[91] Stephen Crane, Christopher Liebchen, Andrei Homescu, Lucas Davi, Per Larsen,
Ahmad-Reza Sadeghi, Stefan Brunthaler, andMichael Franz. Readactor: Practical
code randomization resilient to memory disclosure. In 2015 IEEE Symposium on
Security and Privacy, pages 763–780. IEEE, 2015.

[92] André Rösti, Stijn Volckaert, Michael Franz, and Alexios Voulimeneas. I’ll be
there for you! perpetual availability in the a8 mvx system. In Proceedings of the
40th Annual Computer Security Applications Conference, ACSAC ’24, New York,
NY, USA, 2024. Association for Computing Machinery.

[93] Babak Salamat, Todd Jackson, Gregor Wagner, Christian Wimmer, and Michael
Franz. Runtime defense against code injection attacks using replicated execution.
IEEE Transactions on Dependable and Secure Computing, 8(4):588–601, 2011. doi:
10.1109/TDSC.2011.18.

[94] Stijn Volckaert, Bart Coppens, Bjorn De Sutter, Koen De Bosschere, Per Larsen,
and Michael Franz. Taming parallelism in a multi-variant execution environ-
ment. In Proceedings of the Twelfth European Conference on Computer Systems,
EuroSys ’17, page 270–285, New York, NY, USA, 2017. Association for Com-
puting Machinery. ISBN 9781450349383. doi: 10.1145/3064176.3064178. URL
https://doi.org/10.1145/3064176.3064178.

[95] GDB Developers. Gdb: The gnu project debugger, 2025. URL https://sourceware.
org/gdb/.

[96] Cristian Cadar, Daniel Dunbar, and Dawson Engler. Klee: unassisted and au-
tomatic generation of high-coverage tests for complex systems programs. In
Proceedings of the 8th USENIX Conference on Operating Systems Design and
Implementation, OSDI’08, page 209–224, USA, 2008. USENIX Association.

[97] LLVM Developers. The llvm compiler infrastructure. https://llvm.org/, 2025.
[98] GLib Development Team. Glib. https://gitlab.gnome.org/GNOME/glib/, 2025.
[99] The GTK Team. The gtk project. https://www.gtk.org/, 2025.
[100] Hunspell Developers. Hunspell. https://github.com/hunspell/hunspell, 2025.
[101] Chris D. Peterson and Paulo Cesar Pereira de Andrade. xedit - simple text editor

for x. https://www.x.org/archive/X11R7.6/doc/man/man1/xedit.1.xhtml, 2025.
[102] Glyph & Cog LLC. xpdf - portable document format (pdf) file viewer. https:

//www.xpdfreader.com/xpdf-man.html, 2025.
[103] Integrated Computer Solutions Inc. Motif. https://motif.ics.com/motif , 2025.
[104] Alyssa Milburn, Herbert Bos, and Cristiano Giuffrida. Safeinit: Comprehensive

and practical mitigation of uninitialized read vulnerabilities. InNDSS, volume 17,
pages 1–15, 2017.

[105] CVE-2008-0166. Available from MITRE, CVE-ID CVE-2008-0166., 2008. URL
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-0166.

[106] CVE-2016-4569. Available from MITRE, CVE-ID CVE-2016-4569., 2016. URL
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-4569.

[107] MPlayer Developers. Mplayer - the movie player. http://www.mplayerhq.hu/
design7/news.html, 2025.

[108] LLVM Developers. Llvm programmer’s manual. https://llvm.org/docs/
ProgrammersManual.html, 2025.

[109] SQLite Developers. Sqlite. https://www.sqlite.org/, 2025.
[110] SpiderMonkey Developers. Spidermonkey. SpiderMonkey, 2025.
[111] Intel Inc. Intel 64 and IA-32 Architectures. Software Developer’s Manual, 2021.
[112] fishermen. Hustfisher/ptmalloc, December 2024.
[113] DORA. Accelerate state of devops, 2023. URL https://services.google.com/fh/

files/misc/2023_final_report_sodr.pdf.

[114] Daan Leijen, Ben Zorn, and Leonardo de Moura. Mimalloc: Free list shard-
ing in action. Technical Report MSR-TR-2019-18, Microsoft, June 2019.
URL https://www.microsoft.com/en-us/research/publication/mimalloc-free-
list-sharding-in-action/.

[115] Hans-Juergen Boehm and Mark Weiser. Garbage collection in an uncooperative
environment. Software: Practice and Experience, 18(9):807–820, 1988.

[116] Zekun Shen and Brendan Dolan-Gavitt. Heapexpo: Pinpointing promoted point-
ers to prevent use-after-free vulnerabilities. In Proceedings of the 36th Annual
Computer Security Applications Conference, ACSAC ’20, page 454–465, New York,
NY, USA, 2020. Association for Computing Machinery. ISBN 9781450388580.
doi: 10.1145/3427228.3427645. URL https://doi.org/10.1145/3427228.3427645.

[117] Erik van der Kouwe, Vinod Nigade, and Cristiano Giuffrida. Dangsan: Scalable
use-after-free detection. In Proceedings of the Twelfth European Conference
on Computer Systems, EuroSys ’17, page 405–419, New York, NY, USA, 2017.
Association for Computing Machinery. ISBN 9781450349383. doi: 10.1145/
3064176.3064211. URL https://doi.org/10.1145/3064176.3064211.

[118] Byoungyoung Lee, Chengyu Song, Yeongjin Jang, Tielei Wang, Taesoo Kim,
Long Lu, and Wenke Lee. Preventing use-after-free with dangling pointers
nullification. In NDSS, 2015.

[119] Yves Younan. Freesentry: protecting against use-after-free vulnerabilities due
to dangling pointers. In NDSS, 2015.

[120] Hongyan Xia, JonathanWoodruff, SamAinsworth, NathanielW Filardo, Michael
Roe, Alexander Richardson, Peter Rugg, Peter G Neumann, Simon W Moore,
Robert NM Watson, et al. Cherivoke: Characterising pointer revocation using
cheri capabilities for temporal memory safety. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, pages 545–557, 2019.

[121] Nathaniel Wesley Filardo, Brett F Gutstein, Jonathan Woodruff, Sam Ainsworth,
Lucian Paul-Trifu, Brooks Davis, Hongyan Xia, Edward Tomasz Napierala,
Alexander Richardson, John Baldwin, et al. Cornucopia: Temporal safety for
cheri heaps. In 2020 IEEE Symposium on Security and Privacy (SP), pages 608–625.
IEEE, 2020.

[122] Jon Rafkind, Adam Wick, John Regehr, and Matthew Flatt. Precise garbage
collection for c. In Proceedings of the 2009 international symposium on Memory
management, pages 39–48, 2009.

[123] SengMing Yeoh, Xiaoguang Wang, Jae-Won Jang, and Binoy Ravindran. smvx:
Multi-variant execution on selected code paths. In Proceedings of the 25th
International Middleware Conference, pages 62–73, 2024.

[124] Prabhu Rajasekaran, Stephen Crane, David Gens, Yeoul Na, Stijn Volckaert, and
Michael Franz. Codarr: Continuous data space randomization against data-
only attacks. In Proceedings of the 15th ACM Asia Conference on Computer and
Communications Security, pages 494–505, 2020.

[125] Zihao Chang, Jihan Lin, Haifeng Sun, Runkuang Li, YingWang, BinHu, Xiaofang
Zhao, Dejun Jiang, Ninghui Sun, and Sa Wang. Chaos: Function granularity
runtime address layout space randomization for kernel module. In Proceedings
of the 15th ACM SIGOPS Asia-Pacific Workshop on Systems, pages 23–30, 2024.

[126] Lucas Davi, Christopher Liebchen, Ahmad-Reza Sadeghi, Kevin Z Snow, and
Fabian Monrose. Isomeron: Code randomization resilient to (just-in-time)
return-oriented programming. In NDSS, 2015.

[127] Anthony Cozzie, Frank Stratton, Hui Xue, and Samuel T King. Digging for data
structures. In OSDI, volume 8, pages 255–266, 2008.

[128] Asia Slowinska, Traian Stancescu, and Herbert Bos. Howard: A dynamic exca-
vator for reverse engineering data structures. In NDSS, 2011.

[129] Brian Suchy, Simone Campanoni, Nikos Hardavellas, and Peter Dinda. Carat:
A case for virtual memory through compiler-and runtime-based address trans-
lation. In Proceedings of the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 329–345, 2020.

[130] Brian Suchy, Souradip Ghosh, Drew Kersnar, Siyuan Chai, Zhen Huang, Aaron
Nelson, Michael Cuevas, Alex Bernat, Gaurav Chaudhary, Nikos Hardavellas,
et al. Carat cake: Replacing paging via compiler/kernel cooperation. In Pro-
ceedings of the 27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 98–114, 2022.

[131] Robert N.M. Watson, Jonathan Woodruff, Peter G. Neumann, Simon W. Moore,
Jonathan Anderson, David Chisnall, Nirav Dave, Brooks Davis, Khilan Gudka,
Ben Laurie, Steven J. Murdoch, Robert Norton, Michael Roe, Stacey Son, and
Munraj Vadera. Cheri: A hybrid capability-system architecture for scalable
software compartmentalization. In 2015 IEEE Symposium on Security and Privacy,
pages 20–37, 2015. doi: 10.1109/SP.2015.9.

[132] Abhishek Bapat, Jaidev Shastri, Xiaoguang Wang, Abilesh Sundarasamy, and
Binoy Ravindran. Dapper: A lightweight and extensible framework for live
program state rewriting. In 2024 IEEE 44th International Conference on Distributed
Computing Systems (ICDCS), pages 738–749. IEEE, 2024.

[133] Luís Pina, Anastasios Andronidis, and Cristian Cadar. Freeda: Deploying in-
compatible stock dynamic analyses in production via multi-version execution.
In Proceedings of the 15th ACM International Conference on Computing Frontiers,
pages 1–10, 2018.

[134] Damien Doligez and Georges Gonthier. Portable, unobtrusive garbage collection
for multiprocessor systems. In Proceedings of the 21st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’94, page 70–83, New

https://www.spec.org/cpu2006/
https://www.spec.org/cpu2006/
https://doi.org/10.1145/3462699
https://doi.org/10.1145/3064176.3064178
https://sourceware.org/gdb/
https://sourceware.org/gdb/
https://llvm.org/
https://gitlab.gnome.org/GNOME/glib/
https://www.gtk.org/
https://github.com/hunspell/hunspell
https://www.x.org/archive/X11R7.6/doc/man/man1/xedit.1.xhtml
https://www.xpdfreader.com/xpdf-man.html
https://www.xpdfreader.com/xpdf-man.html
https://motif.ics.com/motif
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-0166
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-4569
http://www.mplayerhq.hu/design7/news.html
http://www.mplayerhq.hu/design7/news.html
https://llvm.org/docs/ProgrammersManual.html
https://llvm.org/docs/ProgrammersManual.html
https://www.sqlite.org/
SpiderMonkey
https://services.google.com/fh/files/misc/2023_final_report_sodr.pdf
https://services.google.com/fh/files/misc/2023_final_report_sodr.pdf
https://www.microsoft.com/en-us/research/publication/mimalloc-free-list-sharding-in-action/
https://www.microsoft.com/en-us/research/publication/mimalloc-free-list-sharding-in-action/
https://doi.org/10.1145/3427228.3427645
https://doi.org/10.1145/3064176.3064211


EuroSec’25, March 30-April 3 2025, Rotterdam, Netherlands Anton Schelfhout, Adriaan Jacobs, Jonas Vinck, and Stijn Volckaert

York, NY, USA, 1994. Association for Computing Machinery. ISBN 0897916360.
doi: 10.1145/174675.174673. URL https://doi.org/10.1145/174675.174673.

A ASB in Real-World Software

C1 C2 C3 C4 C5
x11 ✓ ✓
libmotif ✓
xpdf 3.03 ✓
xedit 7.7+2 ✓
glibc 2.19 ✓
mplayer 1.4 ✓
glib 2.40.2 ✓
libhunspell ✓
libgtk+2.0 ✓
SQLite 3.24.0 ✓
SpiderMonkey ✓
ptmalloc ✓
Mimalloc 1.8/2.1 ✓
LLVM Memory Sanitizer 3.7.0 ✓

Table 1: Real-world software affected by ASB case. If no ver-
sion is shown, the issue persists over multiple versions.

https://doi.org/10.1145/174675.174673

	Abstract
	1 Introduction
	2 Background
	3 Address-Sensitive Behavior
	3.1 Common Examples of ASB
	3.2 Challenges in ASB Neutralization

	4 Diagnosing ASB: Variant Diffing
	4.1 Detecting Untyped Pointers in Arguments
	4.2 Finding ASB Origins at Divergences

	5 Discussion and Future Work
	6 Conclusion
	Acknowledgments
	References
	A ASB in Real-World Software

