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Abstract
Multi-Variant eXecution (MVX) systems are a potent building block
for comprehensive memory corruption defenses. They run multiple
diversified variants of the same program in parallel, feed them the
same inputs, and monitor whether they produce the same outputs.
If applied correctly, MVX systems ensure that (i) no single exploit
payload can simultaneously compromise all variants and (ii) any
exploit causes an observable divergence in the variants’ behavior.

After repeatedly demonstrating their prowess in detecting control-
flow hijacks, MVX systems are naturally keen to extend their protec-
tion to data-only attacks, which do not solely focus on corrupting
code pointers. However, that would require diversifying the vari-
ants’ data layout as well, which vastly exacerbates known compati-
bility issues of existing systems. Due to Address-Sensitive Behavior
(ASB), benign programs can behave in dissimilar but functionally
equivalent ways depending on memory layout and address values.
This causes variants to diverge in ways that are indistinguishable
from the effects of an attack to the MVX monitor.

In this paper, we explore the practical implications of adopting
data diversification inMVX systems. For the first time, we character-
ize and quantify the issue of ASB across a wide range of real-world
software, and find that it is a significant hurdle towards support for
data diversification in MVX. To help address this issue, we devel-
oped a new variant diffing technique that allows us to recognize
and, at times, even neutralize different classes of ASB by locating
address-related data in the variants without compiler support.

CCS Concepts
• Security and privacy→ Operating systems security; Software
security engineering.
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1 Introduction
Memory safety issues are a long-standing source of exploitation
in the system-level software stack that underpins our digital in-
frastructure [1–7] . Despite numerous attempts to eliminate these
vulnerabilities through testing [8–10], fuzzing [11, 12], or migra-
tion to memory-safe languages [13–17], they continue to present a
flourishing exploitation avenue for attackers to this day [18] .

Among the landscape of defenses proposed overmany decades [19–
24], Multi-Variant eXecution (MVX) stands out as a particularly
strong approach to defeat memory error exploitation at a low run-
time cost [25–42]. MVX systems run multiple variants of the same
program in parallel, supply them with the same inputs, and dedupli-
cate their outputs [25]. The variants are semantically equivalent but
diversified so that exploit payloads cannot simultaneously compro-
mise all variants [43, 44]. Instead, they make the variants’ behavior
diverge [31]. The MVX system detects such divergences by run-
ning the variants in lock-step while comparing their system call
sequences and arguments [32].

Uniquely, MVX systems present an escape from the classical
trade-off between security and run-time overhead that characterizes
typical enforcement-based exploit mitigations [45, 46] , since the
overhead of monitoring and synchronizing variants at system calls
is relatively low (< 5% on syscall-intensive benchmarks [47]) and
indifferent to the set of diversity techniques applied to the variants.
Instead, the primary downside of MVX is its increased resource
consumption, often requiring additional system memory and CPU
cores to function efficiently [32]. Fortunately, these resources tend
to be easier to scale than the single-threaded performance ofmodern
processors [48]. This makes MVX an attractive solution for highly
security-critical yet performance-conscious applications.

This is especially true in the data-only attack era. Unlike control-
flow hijacks, which corrupt code pointers to achieve arbitrary code
execution, data-only attacks need not rely on corrupting specific
types of data [49–55] to achieve similarly insidious exploits [56–
58]. Instead, they can target a wide variety of hard-to-isolate pro-
gram data [59], such as system call arguments [55, 60], decision-
making data [59, 61, 62], or application-specific security-sensitive
data [7, 63, 64]. This has led many current mitigation proposals to
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revert to enforcing complete [19, 20, 65–75] or partial [49–51, 53, 76–
78] memory safety, which requires frequent checks on most mem-
ory accesses, causing excessive run-time overhead. MVX systems
could instead inhibit the corruption or leakage of attack targets
through diversified data layouts in all variants, making the effects of
data-only exploits unpredictable and unequal among the different
variants [26], and leading to divergences [34, 79].

However, the broader adoption of data layout diversification in
MVX systems faces a major obstacle, as many programs behave
non-deterministically when their memory layout is not fixed. This
phenomenon, referred to as “Address-Sensitive Behavior” (ASB) in
prior work [29, 31, 80], is a known issue for reproducibility and
checkpoint/restore use cases [81–83], but is fatal for MVX sys-
tems [80]. Listing 1 shows an address-dependent sorting operation,
a typical example of ASB. As the order of objects differs across
variants, different objects will be printed. These divergences, while
benign, are indistinguishable from the effects of an attack on the
system. As such, ASB inhibits current-generation MVX systems
from adopting the data diversification necessary to counter modern
data-only attacks at a time when comparably efficient defenses for
these attacks are as sought-after as they are rare.

int compare(const void* a, const void* b) {
return (*(intptr_t*)a - *(intptr_t*)b);

}
int main() {

int arr[] ={object1, object2, ...};
qsort(arr, sizeof(sometype), compare);
print_array(arr,n);

}

Listing 1: Example of an address-dependent iteration order,
with differing syscall behavior as a result.

Studying, characterizing, and exploring a path towards neutral-
izing Address-Sensitive Behavior (ASB) in the context of MVX is
the central focus of this paper. For the first time, we examine the
presence and effects of ASB in a broad range of software. Through
manual experimentation with diversified data layouts in a state-
of-the-art MVX system, we readily find numerous examples in
common, moderately complex programs, such as the SPEC CPU
suite [84]. We show that previous neutralization efforts do not
suffice to handle more complex cases of ASB, and argue that the
challenge of complete ASB neutralization is much greater than pre-
viously understood. In search of a pragmatic solution, we develop
a new variant diffing technique that leverages data layout diversi-
fication to let the monitor automatically discover the location of
pointers in the variants’ address spaces. For diverging system calls
where contents of buffer arguments differ, this technique allows
for determining if the differing bytes are indeed pointers and if
they are equivalent among the variants. This automatically allevi-
ates the compatibility issue observed in previous work [47]. For
the more common type of ASB-originated divergences where the
variants have taken a different control-flow path, we use the vari-
ant diffing technique to help diagnose the original location of ASB
in the program. While we cannot confidently distinguish benign
from malicious behavior in this case, our diagnostic information
helps bridge the gap between the opaque divergence and its subtle

ASB-related cause, and lets developers know where to manually
refactor their code to eliminate the non-deterministic behavior.

In summary, we contribute the following. First, we demonstrate
the problem ASB causes for data layout diversification inside MVX
systems, analyze common examples of ASB, and identify limitations
of previous ASB neutralization attempts. Then, we present a new
technique called variant diffing that allows us to automatically
understand the memory layout of diversified variants in an MVX
system. We implemented this technique in a diagnostic tool that
helps us link divergences back to the source code location of the ASB
that caused them. Finally, we present an automatic neutralization
technique that uses our variant diffing infrastructure to distinguish
benign from malicious divergences for certain ASB classes.

2 Background
MVX systems were originally conceived as a mechanism for turning
probabilistic software diversity-based defenses into deterministic
defenses [26–31, 33, 34, 40, 79]. The core idea is that benign pro-
gram functionality is oblivious to low-level details such as memory
layout [31, 85] or instruction set architecture [42, 79], while suc-
cessful exploits must be specifically tailored to these aspects of
each variant [43]. Due to the input replication in MVX, the input
payload cannot be specialized to each variant, and any successful
exploitation of a single variant would trigger diverging behavior
from the other variants. Since their initial conception, MVX systems
have also been adapted to increase software reliability or to safely
deploy software updates [25, 35–37]. Almost all security-focused
MVX systems verify that the variants perform the same system
calls [28–30, 32, 79], with the same arguments, in the same order,
to ensure equivalent behavior. This monitoring granularity strikes
an attractive balance between the overhead of synchronizing and
monitoring variant operations, and preventing successful exploita-
tion from going unnoticed. After all, to have a real impact on the
system, exploits eventually have to perform system calls [29].

Prior work on MVX has primarily focused on defenses against
code-injection and control-flow hijacking attacks [25, 26, 28, 31, 86].
However, in response to improving code pointer defenses, attackers
have increasingly shifted toward advanced exploit techniques that
do not rely on corrupting code pointers at all, so-called data-only
attacks [56–60, 87]. Direct Data Manipulation (DDM) attacks, like
DirtyCred [61] and Heartbleed [7], directly access security-critical
data without hijacking the control flow first [56, 59, 60, 62]. More
recently, Hu et al. showed that Data-Oriented Programming (DOP)
attacks can grant expressive code execution capabilities [57], by
overwriting function arguments and conditional expressions that
determine the control flow of the program [57, 58, 88].

Previous work has recognized the shortcomings of code-level di-
versification alone [89–91], also in the context of MVX [26, 34, 79],
and has taken to data layout diversification in response [90]. As
was also observed by previous work [34, 80], this may cause slight
variations in the variants’ order of operations, which can cause be-
nign divergences and prompt a shutdown. One proposed solution to
this problem is to relax monitoring granularity, as implemented by
BUDDY [34] and DieHard [26], which only check for equivalence
of I/O syscalls. As Lu et al. state, this helps avoid cases where the
order or arguments of syscalls is affected by the variants’ memory
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layout [34]. Indeed, many cases of previously reported ASB pri-
marily affect memory-related syscalls, such as mmap or mprotect,
which are not included for divergence checking under an I/O-only
policy [32, 34]. However, the effects of ASB are not fundamentally
limited to syscalls that implement memory management operations
(as we show in Section 3.1). Worse yet, relaxing the monitoring
granularity to I/O syscalls alone also forfeits the MVX system’s
unique ability to comprehensively stop both existing and new attack
vectors, irrespective of a specific attacker interface to the applica-
tion, such as the network. Many more syscalls, including those
that implement memory-management operations, can be abused
by attackers [32, 92], which may not always involve the specific
I/O interface targeted by relaxed MVX systems.

We believe that the effects of ASB and benign divergences impact
broader MVX adoption, necessitating a conscious approach that
preserves the security advantages of MVX in the data-only era
instead of sacrificing them for niche ASB issues.

ASB is not the sole cause of benign divergences in MVX. How-
ever, it is the only cause that has not been thoroughly investigated
and addressed in prior research. Other causes include asynchronous
signal delivery [93], inter-process [47] and inter-thread [94] com-
munication via shared memory, and virtual system call pages [31].
All of these causes represent sources of input the variants can read
directly from user space, thus bypassing the monitor. Without the
monitor’s mediation, variants could receive different inputs from
these input sources and start to diverge.

3 Address-Sensitive Behavior
The fact that programs behave non-deterministically with respect
to their memory layout is not a new finding and has frustrated
development efforts beyondMVX alone. GDB [95] disables Address-
Space Layout Randomization (ASLR) by default to help improve
the consistency of bug reproduction across runs. Developers of
the KLEE symbolic execution engine [96] recently proposed an
approach to neutralize the non-deterministic effects of the heap
allocator during path exploration [83], which significantly affected
bug finding times, by enforcing deterministic heap layouts across
program runs. Similarly, Riot Games developers encountered non-
determinismwhen analyzing League of Legends game replays using
their Chronobreak infrastructure [81], which was, in part, caused
by ASB. MVX systems have long included workarounds for ASB too,
since it already caused issues for code layout diversification alone.
For instance, GHUMVEE [29] exposes a binary patching interface
which allows developers to replace address-sensitive operations
with variant-agnostic and address-insensitive operations [29].

None of these prior ASB encounters fully demonstrate the is-
sues it causes for fine-grained data layout diversification in MVX.
Unlike bug-finding or game replay use cases, MVX systems can-
not completely disable randomization since they depend on it for
their security benefits. On the other hand, targeted and manual
neutralization, such as that supported by GHUMVEE’s patching in-
frastructure [29], presupposes that developers already know where
the address-sensitive operations are and how they can be rewritten
into semantically equivalent address-insensitive operations. The
former is especially difficult to determine based on opaque and pos-
sibly hard-to-reproduce divergences reported by the MVX monitor.

3.1 Common Examples of ASB
To better understand the impact of ASB on MVX, we examined
previous mentions of ASB-induced divergences in existing MVX
research [28, 29, 34, 40]. We then carried out experiments running
data-diversified variants of various desktop utilities [97–103] and
the SPEC CPU2006 suite [84] in the ReMon [32] MVX system to get
a picture of relevant ASB cases in real-world software. We describe
the most relevant causes of ASB below. All listed ASB occurrences
can be eliminated by manually refactoring the code. The main
difficulty is finding which code constructs cause ASB. Later in this
paper, we introduce variant diffing, a novel technique that makes
the search for ASB causes easier. Using this variant diff, we can
mitigate certain ASB occurrences without manual refactoring.

C1 Uninitialized memory. The effective value of uninitialized
memory depends on the contents previously allocated at those
memory addresses, potentially making it variant-specific. In many
cases, it is desirable to detect uninitialized reads [104], as they repre-
sent bugs or vulnerabilities in the program [26, 105, 106]. However,
uninitialized memory can also inadvertently appear as padding
bytes of structs in buffer arguments to system calls [80], where they
could be used to leak data [40], leading to unrecoverable divergences
between the variants. We found such cases in X11 programs that
communicate structured data via socket calls to the X11 server, e.g.,
in libmotif ’s [103] WriteTargetsTable function, used by various
X11 programs such as xpdf [102] and xedit [101].

Österlund et al. invariably zero out diverging bytes [40], with-
out stopping execution. Alternatively, all memory can be zero-
initialized on allocation [104].

C2 Pointers passed in untyped buffer arguments. Pointers reg-
ularly appear as syscall arguments, in which case typical MVX
systems compare the pointed-to contents of the pointers for equiv-
alence [28]. For typed arguments, this is not an issue; if diverging
bytes are typed as pointers, theMVX systemwill ignore the different
pointers and compare the pointed-to content itself. However, they
can also appear unexpectedly in untyped buffer arguments [29],
e.g., when serializing binary data or printing out pointer values [47].
We found that graphical X11 applications, once again, communi-
cate raw pointer values as part of structured data in buffers to the
X11 server. The mplayer [107] video player also printed out string
representations of pointer values during its warning logging.

Current MVX monitors cannot distinguish these buffers from
malicious attempts to leak data or pointers, and flag a divergence.

C3 Pointers as keys in hash map.Widely used system libraries
often use an address-sensitive value (often the address of an object)
as keys in hash maps. Since the keys differ across variants, the dis-
tribution of objects within the hash map will also differ. This could
cause one variant to experience more bucket collisions, resulting in
one variant requesting more memory. Many real-world applications
contain this pattern. The LLVM compiler framework contains many
standard data types that use it [108], as do common systems-level
libraries like GLib [98], libhunspell [100], and libgtk+2.0 [99].

Due to its prominence, GHUMVEE manually interposed offend-
ing hash functions with a custom, MVX-aware version, that re-
turned the leader variant’s hash results in all variants [29].
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C4 Address-dependent iteration order.Many programs contain
sorted collections of pointers or address-related data, including the
hash map case previously mentioned. The iteration order over these
collections is entirely determined by the pointer values, which are
likely different in the diversified variants. This can make them ex-
ecute wildly different code, with different system calls, benignly.
Lidbury and Donaldson [82] mention that SQLite [109] and Spider-
Monkey [110] iterate through sorted containers of pointers, causing
issues for their record/replay mechanism. We also found many stan-
dard data types in LLVM that implement this pattern [108].

C5 Alignment. Some programs over-align pointers for perfor-
mance reasons or to satisfy the requirements of particular hard-
ware [111]. For instance, ptmalloc aligns new arenas on a 1MB
boundary [112]. To achieve this, it maps a 2MB region, finds a suit-
able 1MB-aligned pointer within it, and then unmaps the unneeded
pages at both ends, as illustrated in Figure 1. Because the variants
will only guarantee the 2MB region to be page-aligned, and its
base address is otherwise randomized, the 1MB-aligned address
will likely be found at different offsets in different variants. These
offsets are non-equivalent address-related data, which can later
cause divergences [80], e.g., in the ptmalloc example, where it is
used as an argument to the sys_munmap syscall.

Figure 1: Alignment in glibc’s ptmalloc implementation [80].

3.2 Challenges in ASB Neutralization
Control-Flow-Altering ASB. The alignment case (C5) already il-

lustrates a trivial pitfall of the approach that neutralizes ASB by
supplying variant-agnostic values to address-sensitive operations
(e.g., returning the leader variant’s hash results as a hash function’s
return value in all variants) [29]. Even if we can force the variants
to take the same control-flow path during the alignment check, e.g.,
by injecting one variant’s alignment result in all variants [29], the
offset of the 1MB-aligned pointer would be incorrect for some of
the variants, causing bugs down the line. In other programs, an
instruction requiring specific alignment may crash on unaligned
values [111], or simply cause performance degradation. In contrast,
GHUMVEE’s approach works flawlessly to neutralize all ASB in the
hash map case (C3) on numerous real-world programs. There, the
one-way nature of the hashing function gives ASB neutralization
the leeway to “lie” about the hash result with impunity since its re-
sult is never validated against the actual pointer value. Similarly, in
the container iteration case (C4), the iteration order typically does
not affect the program’s functionality; most programs primarily
use this pattern to efficiently obtain a unique set of pointers, which
happens to have an address-dependent order.

Evidently, some address-sensitive operations cause the program
to have more assumptions about the underlying pointer value than
others. We generally refer to these assumptions as the “feedback” of
the address-sensitive operation on the pointer value. More feedback
imposes more constraints on ASB neutralization and even variant
diversification because more properties about the variants’ pointers
have to match to ensure equivalent behavior. For instance, if the
variants’ 2MB buffers have to contain a 1MB-aligned address at the

same offset, their least significant 20 (!) bits must be equal, limiting
entropy to the remaining more significant bits.

This feedback remains unaccounted for in GHUMVEE’s patch-
ing solution, and likely requires semantic insight of application
developers to properly neutralize. But to do so, a second ASB issue
must be overcome. As described by Volckaert et al. in the past [29],
ASB tends to originate as minor control-flow divergences among
the variants, which then lead to increasingly divergent behavior
due to non-equivalent program state, after which all the variants
inevitably arrive at different system call invocations. At this point,
the MVXmonitor first becomes aware of the divergence, which may
have initially occurred in an entirely different part of the program,
and it becomes hard for application developers to track down the
original ASB-related cause.

Identifying the origin of ASB-induced divergences is, in itself,
an unsolved problem. The MVX monitor has no insight into the
structure or equivalence of the diversified variants’ data, frus-
trating diagnostic efforts. Worse yet, there may exist many more
address-sensitive operations in the program that do not lead to
MVX-observable divergences in the current software version, or on
the current input workload, but may well cause problems for newer
versions after a software update, requiring developers to repeat the
tedious diagnostic process.

Control-Flow-Preserving ASB. In more straightforward ASB cases,
such as C2, the ASB origin coincides with the system call diver-
gence, which helps to identify the ASB origin and potentially neu-
tralize ASB by injecting equivalent memory or register value into
all variants. However, manually refactoring or interposing these
locations still incurs a lot of developer effort, which may not scale
well to frequently changing code bases with third-party dependen-
cies [113]. In the case of unintentionally-diverging uninitialized
padding (C1), we could zero out the differing bytes, as implemented
by kMVX [40]. When the diverging bytes are intentional pointer
values, this risks causing bugs on the recipient side, e.g., when
communicating structured data through socket calls in X11 (C2).

Ideally, the MVX monitor would automatically be able to recog-
nize untyped address-related data in the syscall arguments, verify
it for equivalence between the variants, and allow execution to con-
tinue if safe. In Section 4.1, we present a neutralization approach
that successfully implements this idea.

4 Diagnosing ASB: Variant Diffing
Data layout diversification complements code layout diversifica-
tion in existing MVX systems [32] to complete the memory layout
diversification picture. Under Disjoint Memory Layouts (DML), the
variants contain the same set of memory objects at disjoint loca-
tions. This means that (i) every object in the leader variant will have
an equivalent object in the followers, and (ii) the storage address
range for these equivalent objects is guaranteed not to overlap
with the range of the leader object. Throughout this section, we
consider two memory objects equivalent if they are semantically
the same object, but they are not byte-for-byte identical. Without
ASB, and assuming that the MVX system neutralizes other sources
of non-determinism [28, 47, 94], the in-memory representation of
equivalent objects only differs when they contain pointers.
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Figure 2: Equivalent objects containing unequal but equiva-
lent pointers in two variants.

With ASB, however, there might be other differences between
equivalent objects. We find that a variant diff that iterates over all
equivalent objects and that examines their differences can prove use-
ful in detecting ASB. Differing bytes that do not represent pointer
values represent the effects of address-dependent operations that,
if caught early enough, can help us understand the source of ASB-
induced divergences (see Section 4.2). Similarly, differing bytes that
do represent equivalent pointer values can help us distinguish be-
tween legitimate pointers that refer to equivalent objects, versus
the effects of attacks that maliciously leak pointer values to defeat
the MVX system’s diversification [34].

To evaluate the potential benefits of variant diffing, we imple-
mented the technique inside the ReMon MVX system [32], adding
1998 LoC. ReMon offers the support to run complex applications [47,
94] and already neutralizes most sources of non-determinism [28,
29]. We implemented Disjoint Memory Layouts (DML) by extend-
ing ReMon’s Disjoint Code Layouts (DCL) infrastructure [31]. With
our extension, ReMon returns non-overlapping address ranges for
all sys_mmap and sys_brk calls executed by the variants. Unless
otherwise specified, we did not apply additional fine-grained object-
level layout diversification, such as random inter-object padding or
shuffling [26, 34]. DML suffices to generate unequal addresses for
equivalent objects, which allows the variant diff to work.

Tracking equivalent objects. To compare equivalent objects, we
must keep track of their location across the different variants. In
our implementation, this is trivial for global and stack objects, since
ReMon only diversifies the base addresses of their respective mem-
ory regions, but does not shuffle or pad individual objects. We treat
these static regions as if they are a single, large object. Under more
fine-grained diversification, the MVX monitor should be informed
of the diversification seed [26] or the locations of equivalent ob-
jects in these regions, which can reasonably be expected when
diversification is applied in the compiler or program loader [44].

For the heap, we implemented much more fine-grained tracking
of individual object boundaries by forcing the variants to use a cus-
tom memory allocator we implemented based on mimalloc [114],
adding 300 LoC. This custom memory allocator executes a new
hypercall, register_obj. The hypercall synchronizes the variants,
verifies that they are in equivalent states, and returns a unique
Equivalent Object ID for the new allocation. Our underlying pre-
supposition is that non-diverged variants allocate equivalent objects
with the same size, in the same order. Within each variant, our cus-
tom allocator keeps track of the object ID and the boundaries of
each object. The allocator also makes the ID-to-boundary mapping
available to the monitor so that it can easily locate and compare
equivalent objects while performing the variant diff.

To catch ASB-induced divergences as early as possible, we per-
form an equivalence check on the synchronized register_obj call,
where we compare not just the hypercall arguments but also the in-
vocation context based on a stack trace we generate for each variant.

This helps us avoid situations where ASB leads to undetected but
non-equivalent allocation behavior in the variants, which would
cause the variants to track non-equivalent objects under the same
ID, and cause noise in the variant diff. Finally, to avoid differing
bytes due to uninitialized data (cfr. Section 3.1), we ensure that all
memory returned by the heap allocator is properly zeroed out [104].

Discovering pointers. As shown in Figure 2, pointers appear as
unequal parts of otherwise byte-for-byte identical objects. However,
they do not necessarily appear at aligned locations [115], and not all
64 bits are necessarily unequal. Hence, for every diverging byte, we
check with any eight-byte sliding window containing this diverging
byte if the window translates to an equivalent address in all variants.

4.1 Detecting Untyped Pointers in Arguments
The variant diff enables us to reliably discover address-related data
in the program, which directly helps to solve the primary issue
in distinguishing benign from malicious system calls in case C2,
where the variants’ control flow has not diverged, but the contents
of their buffer arguments to a system call like write still differ.

We have implemented a prototype solution that performs a par-
tial variant diff, only on the offending buffer arguments of syscalls
that would otherwise cause a shutdown. We scan differing buffers
for pointers, again using the eight-byte window on differing bytes.
If we detect equivalent pointers, i.e., pointers to equivalent objects,
at the same offset in all buffers, we can be sure that the programmer
intended to place specific pointer data in the buffer, and we can
allow the system call to continue. To exploit this leniency, attackers
would have to discover and place equivalent pointer values in the
same location in both variants, which would mean they defeated
the MVX’ diversification and replication already.

To handle the common debugging and error logging practice of
printing out pointer values, we pragmatically attempt to interpret
differing bytes as hexademical string representations of pointers
too, which we then check for equivalence.

If none of these attempts work to explain the differing bytes
as benign ASB, we still assume the divergence is malicious and
terminate the program. From our experiments, we expect that the
current prototype suffices to handle most similar cases of pointer
data in untyped buffer arguments to syscalls. However, most impor-
tantly, the partial variant diff gives future work the tools to handle
new cases, should they come up.

4.2 Finding ASB Origins at Divergences
The most common case of MVX-defeating ASB manifests when
the variants take different control-flow paths after an address-
dependent conditional evaluation, e.g., whether to grow hash map
storage [80], or the order in which they iterate over a sorted con-
tainer of pointers [82]. In this case, the variants may perform non-
equivalent system calls, which are observed as a divergence by the
MVX monitor, which then terminates execution. To better under-
stand the presence of address-dependent values in the variants’
address spaces, we perform a complete diff of the variants’ address
spaces before they terminate, recursively comparing equivalent
objects and collecting the observed divergences, i.e., unequal object
contents that do not represent pointers to equivalent objects.
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We ran our tool on an Intel(R) Xeon(R) Silver 4214 CPU @
2.20GHz with 64 GiB DDR4 RAM. The machine runs Ubuntu 20.04
LTS with Linux kernel version 5.15.0. We tested 13 C programs in
the SPEC CPU2006 [84] suite and found that two of the benchmarks
diverged due to ASB: 403.gcc and 456.hmmer showed divergent
allocation behavior among the variants. We manually confirmed
in the source code that both originated from address-sensitive op-
erations, 403.gcc due to a case similar to pointer hashing (C3),
and 456.hmmer due to pointer alignment, which later resulted in
both variants requesting different amounts of extra memory. How-
ever, 456.hmmer only caused an observable divergence on our own
register_obj hypercall, meaning that, even though the allocation
behavior technically diverges, it usually goes unnoticed. Catching
it early gives us a better insight into where ASB first alters control
flow. This slight divergence is crucially important to detect for the
functionality of the variant diff, as we require fully equivalent allo-
cation behavior to correctly link allocations in different variants
together. This highlights a dual purpose in our checking off allo-
cation behavior through register_obj: keeping the variant diff
correct and catching divergences due to ASB early.

Figure 3: Result of variant diff on SPEC CPU2006 suite.

However, our goal reaches beyond detecting system call diver-
gences due to ASB, which MVX systems already do inadvertently.
Our variant diffing mechanism also allows us to detect ASB that
did not cause MVX-observable divergences but may still do so in
the future after software updates or different inputs. We conducted
an experiment where we ran the diff when the variants terminated.
We labeled all of the variant’s equivalent allocations as either equal
when they were byte-for-byte identical, equivalent when they dif-
fered only because they contained equivalent pointers, and unequal
when they differed for another reason. Figure 3 shows what per-
centage of allocations for each benchmark falls into which category.

We see that the vast majority of allocations are either equal or
equivalent. 403.gcc terminates rather quickly due to the diver-
gence, likely explaining why only a small percentage of allocations,
0.53%, are unequal. On the other hand, 456.hmmer shows a much
higher percentage, suggesting that non-crashing ASB runs ram-
pant before finally triggering a divergence. In all other benchmarks,
though they did not show divergences, we still observe some un-
equal allocations, which could lead to detectable divergences as the
codebase evolves. With the granularity of the variant diff as it is, we
cannot determine where or when these allocations became unequal.
Still, we can show where these allocations were first made using
the backtrace from when they were made. This gives developers
valuable insights into which objects are influenced by ASB.

Our study leads us to believe that (i) many ASB-divergences
are caused by a single code construct, and (ii) ASB is very rarely

an intended program construct for performance or other reasons.
As a result, we believe that it might be possible to remove ASB
through (limited) refactoring without substantially changing the
application’s semantics or performance characteristics.

5 Discussion and Future Work
Enforcing a program’s determinism with respect to its memory lay-
out naturally has benefits beyondMVX systems alone, as mentioned
in Section 3. In addition, we expect that our variant diffing tech-
nique could also be of interest to other application domains. Being
able to locate pointers in memory images of arbitrary systems-level
programs precisely is an extremely coveted ability in itself, pur-
sued by a plethora of previous work for a wide variety of reasons,
such as dangling pointer nullification [66, 116–121], garbage collec-
tion [115, 122], online program re-randomization [123–126], and
reverse engineering [127, 128], among others [129–132]. In the past,
previous work relied on heuristics [115, 122], compiler [66, 129, 130]
and even hardware support [131] to distinguish pointers from other
program data. We can see how MVX systems could provide such
info as a simple byproduct of redundant execution and memory lay-
out diversification. However, a high-quality variant diff would still
require all ASB to be neutralized in the variants, to ensure that dif-
fering bytes in equivalent objects are faithfully pointer values, and
not second-degree effects of earlier address-sensitive operations.

Our current variant diffing implementation prioritizes effective-
ness over run-time efficiency, since we primarily aim to sanitize
programs for ASB issues. The largest source of overhead are the
variant synchronization points at every heap allocation. In ASB-
free programs, we could relax these restrictions to speed up the
equivalent object tracking. However, computing the variant diff
will still be costly; variants must be in equivalent stopped states,
and both variants’ process images must still be parsed. Future work
could explore whether the variant’s inherent parallelism [33, 133],
or asynchronous scanning techniques from the garbage collection
world [134], can help generate efficient variant diffs.

6 Conclusion
In this paper, we explored the challenges that Address-Sensitive
Behavior (ASB) poses for data layout diversification within MVX
systems. We examined various real-world examples of ASB and
formulated challenges for solvingASB based on their characteristics.
This study uncovered shortcomings of existing solutions as well
as new insights. We introduced a novel technique called variant
diffing, which enables automatic analysis of the memory layout
across diversified variants in MVX. We have developed a diagnostic
tool based on variant diffing and integrated it into the advanced
MVX framework, ReMon. Additionally, we proposed an automatic
neutralization strategy that can distinguish between benign and
malicious divergences for control-flow preserving ASB.
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A ASB in Real-World Software

C1 C2 C3 C4 C5
x11 ✓ ✓
libmotif ✓
xpdf 3.03 ✓
xedit 7.7+2 ✓
glibc 2.19 ✓
mplayer 1.4 ✓
glib 2.40.2 ✓
libhunspell ✓
libgtk+2.0 ✓
SQLite 3.24.0 ✓
SpiderMonkey ✓
ptmalloc ✓
Mimalloc 1.8/2.1 ✓
LLVM Memory Sanitizer 3.7.0 ✓

Table 1: Real-world software affected by ASB case. If no ver-
sion is shown, the issue persists over multiple versions.
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