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Abstract
The rising popularity of Graphics Processing Units (GPUs) hasmade
them an attractive target for attackers looking to steal Intellectual
Property (IP) such as ML models or disrupt the operation of het-
erogeneous computing systems. However, defending against GPU
attacks is anything but trivial since the inner workings of these–
often proprietary–devices are still poorly understood. Preliminary
work demonstrates a worrying similarity to the attack surface of
the CPU domain, particularly concerning the memory unsafety of
device-side code. We corroborate these worrying findings by con-
structing the first rigorous experimental analysis of input-triggered,
ROP-based exploits entirely within device-side NVIDIA CUDA code.
We repurposed known CPU-based code-reuse attack techniques to
unlock previously unusable gadgets in this code and demonstrate
that the gadget set is Turing-complete, enabling attackers to per-
form arbitrary computations. We conclude that ROP attacks on
GPUs are feasible and more potent than previously thought.

Following this discovery, we evaluate the strength of current
device-side mitigations, such as stack canaries and Address Space
Layout Randomization (ASLR). Given the lack of more powerful
protection mechanisms, these basic security measures play a crucial
role in GPU security. However, we find them even less secure than
their CPU counterparts. Our findings indicate that the GPU domain
urgently needs robust protection mechanisms that fit the unique
GPU architectures and address the flaws in existing systems.
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1 Introduction
In recent years, the popularity of Graphics Processing Units (GPUs)
has been on the rise. These accelerator cards contain highly-parallel
circuitry that improves the speed and power efficiency of an ever-
increasing number of software applications, ranging from tradi-
tional graphics rendering to Artificial Intelligence (AI) [1], Machine
Learning (ML) [2, 3], simulation [4], and graph processing [5].

Following the rapid adoption of GPUs across the software land-
scape, applications using GPU acceleration have become increas-
ingly attractive targets for malicious actors to exploit. They often
handle sensitive data or hold important decision-making power,
e.g., in data encryption or ML inference applications, while being
entrusted to peripheral hardware platforms that have historically
not been exposed to or hardened against malicious users [6–8].
Leveraging the inadequacies of these platforms, attackers have
been able to exploit GPU-accelerated applications for various rea-
sons; to leak sensitive data [9–11] such as encryption keys [12–14],
keystrokes [15, 16], rendered web pages [17–20], or ML model
weights [17, 21–23], to influence ML training and inference [17, 24,
25], to hijack or waste computing power [26, 27], and to break out
of the GPU environment to attack the host system itself [6, 8].

While many of these attacks have focused on breaking the
isolation between users in a multi-tenant device-sharing threat
model [17, 28–31], like in the cloud [32], alternative avenues of ex-
ploitation also exist. GPUs are generally programmed using dialects
of C++ [33, 34], and, as such, inherit many of the same memory
safety issues that have plagued C/C++ applications on the CPU
for decades [35]. Previous work already showed that, despite the
differences in architecture [25], memory errors on accelerator hard-
ware can once again be used to gain arbitrary read and write primi-
tives [36, 37], which grants attackers similar power over the address
space as on the CPU [38]. For instance, researchers were able to
launch Return-Oriented Programming (ROP) [39] attacks [25, 38],
to change the weights of an ML model or to overwrite code pages in
the NVIDIA CUDA programming environment. While these attacks
highlight the possibility of ROP on CUDA, they do not demonstrate
its full potential: achieving arbitrary computation independently, a
feat proven on the CPU over a decade ago [40, 41]. Previous work
suggests that the applicability of ROP on GPUs is limited by the
scarcity of available gadgets, a result of the alignment of the Pro-
gram Counter (PC), which makes discovering unintended gadgets
challenging [38], nay impossible.

This paper demonstrates that using ROP on GPUs allows for arbi-
trary computation by providing the first rigorous experimental
analysis of a Turing-complete, input-triggered, ROP-based
weird machine entirely within device-side NVIDIA CUDA
code. Additionally, similar to return-to-libc style attacks on the
CPU [42], this ROP chain exclusively utilizes gadgets found in the
CUDA runtime library, which serves as the CUDA equivalent of

https://orcid.org/0009-0003-6510-4273
https://doi.org/10.1145/3722041.3723099
https://doi.org/10.1145/3722041.3723099
https://doi.org/10.1145/3722041.3723099


EuroSec’25, March 30-April 3 2025, Rotterdam, Netherlands Jonas Roels, Adriaan Jacobs, and Stijn Volckaert

the standard C library (libc) on the CPU, making them accessible
in every CUDA program. We also demonstrate that widely used
CUDA libraries contain ROP gadgets, which enhance the attacker’s
capabilities and reduce their reliance on the runtime library. We
achieve this using a technique we call Compounding ROP Gadgets,
which borrows ideas from previous work on code-reuse attacks on
the CPU [43–45], that enable the exploitation of gadgets dismissed
by previous work [38]. To build the tools necessary for creating
this gadget set,we further reverse-engineered the Turing SASS
ISA to refine the insights provided by previous work [46, 47]. In
this way, we demonstrate that code-reuse attacks are feasible on
GPUs and more potent than previously thought.

Our findings reinforce the growing awareness that GPUs re-
quire strong protection mechanisms against such expressive attacks.
However, we find that the two most commonly used and accessi-
ble protection mechanisms on GPUs—stack canaries and Address
Space Layout Randomization (ASLR) [48]—have weaknesses that
leave them vulnerable to exploits. In particular,we discovered two
weaknesses in the implementation of stack canaries by the
NVIDIA CUDA Compiler (NVCC) [49]: it fails to insert canaries
into all vulnerable functions, and due to weak error propagation
between the GPU and CPU, a canary check failure does not termi-
nate the host process. This, combined with the fact that canaries
on the GPU are only randomized at process startup, makes them
susceptible to leakage and brute-force attacks. Even though ca-
naries are much more essential on the GPU due to the lack of other
basic protection mechanisms, such as Data Execution Prevention
(DEP) [38, 50], they are even less secure than on the CPU.

Like stack canaries,ASLR is susceptible to leakage and brute-
force attacks, as its randomization occurs only at process launch.
Thus, we conclude that both mitigations can be easily bypassed
and will not stop determined adversaries from launching input-
triggered ROP attacks on the GPU.

Finally, we find that currently, no existing GPU-based exploit
mitigation [51–56] or sanitizer [57–63] offers strong security
guarantees while also being attractive to deploy. Accordingly,
we would like this paper to serve as a call to action for the GPU
industry and the academic world to develop new and improved
protection mechanisms.

2 The CUDA GPU Architecture
This section describes the CUDA GPU architecture, more specifi-
cally, we focus on the Turing microarchitecture in this paper. CUDA
programs consist of host and device code [49], which the host can
invoke through special functions called CUDA kernels. These ker-
nels take additional parameters, namely the number of blocks and
threads per block. The CUDA runtime divides these blocks into
warps, typically containing at most 32 threads each, and schedules
those over the available Streaming Multiprocessors (SMs).

The host communicates with the NVIDIA driver through the
CUDA runtime library to initiate kernels and interact with the GPU
in other ways, such as allocating or copying memory. This library
provides the functions necessary for these operations and performs
the required system calls to communicate with the GPU. Next to
the host code, this library also contains device code, which provides
functions that would be provided by the Operating System’s (OS)

Figure 1: The CUDA Compiler and Runtime Architecture

kernel or libc on the CPU. Examples of these are memory alloca-
tion functions, e.g., malloc and free, and I/O operations, such as
printf. Figure 1 shows the interaction between the CUDA kernel,
host process, and driver using the runtime library.

While executing, CUDA kernels have access to various memory
spaces [33], namely: global memory, which serves as the heap and
is used for storing code and exchanging data with the host; local
memory, which forms a thread local stack; shared memory, which
is a fast, on-chip memory for data-exchange between threads in the
same block; and constant memory, a fast, read-only memory. For
each of these memory spaces, CUDA provides specific instructions,
e.g., LDL/STL for local memory, and generic ones, e.g., LD/ST, that
are capable of accessing global, local, and shared memory [38].

CUDA GPUs also have access to various registers, including
256 thread-local general-purpose registers, 64 warp-local uniform
registers, 8 thread-local predication registers [46], 12 thread-local
barrier registers, and special registers, e.g., containing information
about the location of the thread within the block.

The NVIDIA CUDA Compiler (NVCC) can produce device-side
binaries in two distinct formats [49]: Parallel Thread Execution
(PTX) and Streaming Assembly (SASS). PTX is an intermediate
representation of the program that is Just-in-Time (JIT) compiled
by the CUDA runtime into SASS for the correct architecture, which
provides portability across different CUDA devices. In contrast,
SASS is the architecture-specific machine code directly executed on
CUDA-enabled GPUs. The compilation from PTX to SASS happens
using the PTXas compiler backend. Furthermore, NVCC can also
produce fatbinaries, which are files containing a combination of
PTX and SASS code for multiple architectures. In addition, NVCC
relies on a C++ compiler such as Clang++ to produce the host binary.
Figure 1 visually represents this compiler hierarchy.

NVIDIA only provides limited documentation for the SASS ISA
and frequently updates it across GPU microarchitectures [64]. Tur-
ing SASS instructions use a 16-byte format that, according to Jia
et al. [46], consists roughly of 12 bytes encoding the instruction
information, 3 bytes used for control logic, and a single unused byte.
The control logic determines how the CUDA runtime schedules
operations between SMs and the synchronization and yielding of
threads.

Another key aspect of CUDA devices is predicated execution.
This pattern makes control-flow divergence among threads possible
and uses predication registers to selectively execute instructions
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(a) Turing SASS Instruction Fields

(b) Example of a Turing SASS Instruction

Figure 2: Turing SASS Instruction Format.

on specific threads. As a general rule, developers should minimize
thread divergence whenever possible to maximize performance, as
diverging threads reduce the number of parallelized operations.

.

3 Reverse Engineering the Turing SASS ISA
A key step in crafting ROP gadgets is analyzing memory contents.
NVIDIA-provided tools such as Cuobjdump and Nvidisasm [64] are
unsuitable for this purpose, since they expect well-formatted input.
Instead, we developed a custom tool that analyzes the memory
dump and decodes the binary instructions into human-readable
SASS code. To do this, we first needed to gain a deeper understand-
ing of the under-documented SASS ISA, particularly how operands
and predicated execution are represented in the opcode. Jia et al. al-
ready provide some insight about SASS control logic [46], but do not
cover all possible instructions, nor the encoding of their operands.
Other work only describes older architectures [47], which NVIDIA
has completely overhauled.

Through binary analysis, we discovered that an instruction com-
prises five parts, as shown in Figure 2a. The instruction starts with
a 4-bit predication field (P), whose encoding on the Turing archi-
tecture remains unchanged from older architectures analyzed by
Hayes et al. [47]. Three bits (𝑟 ) indicate which predication register
to use, with an all-one value (0x7) hard-wired to a special Predica-
tion True (PT) value, meaning the instruction is always executed. A
4th bit (𝑛) optionally negates the looked-up predicate. It is nonsen-
sical in conjunction with the PT value since that would constitute
a never-executed instruction. We summarize the decoding of the
predication field in Equation 1.

Predication(𝑟, 𝑛)

P𝑟 if 𝑟 < 7 and 𝑛 == 0
!P𝑟 if 𝑟 < 7 and 𝑛 == 1
PT if 𝑟 == 7

(1)

Next, we find 12 bits that select the opcode, which is followed
by ten bytes encoding operands in the form of 32-, 48-, or 64-bit
immediates; register of any types; operation modes; or combina-
tions thereof. The general-purpose, barrier, and uniform registers
are encoded using a single byte. Predication registers use only 4
bits [47], and are decoded using Equation 1. Operation modes are
used in specific instructions to define their precise behavior, such
as the number of bits loaded by a load instruction. The final two
parts, as described by Jia et al.[46], comprise the control logic and
unused bytes. Figure 2b gives an example of an encoded addition
instruction, which takes three registers and a 32-bit immediate as
operands.

Previous work mentions that to access local memory using
generic load/store instructions [38], the CUDA runtime prefixes
the offset with a “magic” value to form the address. We found that
these magic values take up a single byte, specifically, bits 24 through
31 of the address. Further, we discovered that even when ASLR is
disabled, these values vary between different CUDA runtimes, in-
cluding those on the same system, for example, within a debugging
environment such as CUDA-GDB or outside of it. We also found
that these values change between driver versions.

4 Threat Model
We consider a heterogeneous application where the host process
continuously receives input, launches a CUDA kernel to process
this input, and returns the kernel’s output, simulating the basic
operations of, e.g., a machine learning inference server. We assume
that at least one of the device functions invoked by this CUDA
kernel contains a memory corruption vulnerability that can be
triggered by user input. The host application, in contrast, can be
entirely error-free. All parts of the attack occur on the GPU, which
we assume has a protection mechanism like Write-XOR-eXecute
(W⊕X) in place, making code-injection attacks impossible. While
current-generation hardware, including our evaluation platform,
does not support this feature [65, 66], future architectures may
choose to implement it. Finally, we assume that the GPU has all
supported protection mechanisms enabled, such as ASLR and stack
canaries.

5 Code-Reuse Attacks on GPUs
This paper focuses on attacking NVIDIA CUDA-enabled GPUs like
the NVIDIA Quadro T400. All experiments were conducted on this
GPU, utilizing CUDA toolkit version 12.6, NVIDIA driver version
560.35.05, and Clang 18.1.8. The host system comprises an AMD
7800X3D CPU with 64 GB of DDR5 RAM running Ubuntu 24.04.1
LTS with the 6.8.0-51-generic Linux kernel.

5.1 Building a ROP Gadget Set
Traditional ROP gadgets in CUDA code are sequences of instruc-
tions that end with a return instruction and include instructions
that retrieve the return address from the stack, which is stored in
local memory. Unlike x86 CPUs, GPUs do not automatically pop
the return address from the stack when executing the return in-
struction. Instead, they return based on a value held in a register.
Furthermore, valid gadgets should not contain any control-flow-
altering instructions, such as branches, jumps, or calls, as these
could lead to crashes due to the altered program state or exit the
ROP chain. Additionally, gadgets containing synchronization in-
structions must be used with caution. When selecting gadgets, it
is important to consider predicated execution, as leveraging this
correctly enhances gadget effectiveness at the cost of complexity.

Using tools created by Zhang et al. [65], we dumped the entire
GPU memory and extracted the page table contents. Using this
information, we determined the physical address of the memory
page that contains the device-side CUDA runtime library code. We
disassembled this page using a script based on the information
outlined in Section 3.
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Figure 3: Example GPU ROP chains

Using this process, we discovered 380 return instructions, of
which 278 formed valid gadgets according to the constraints out-
lined above, significantlymore than the 52 identified byGuo et al. [38].
Of these, 64 are unique regarding instruction sequence and operands
used. Most of these gadgets perform simple operations, such as
solely loading registers from the stack. However, we also found
more specialized gadgets, including generic load and store opera-
tions, atomic operations on generic and global memory, predicate
setting operations, and gadgets that overload the stack pointer.

Compounding ROP Chains. By employing a technique similar
to those found in advanced ROP attacks on RISC CPUs [44, 45], as
well as JOP attacks [43], we discovered additional gadgets, which
we call sub-gadgets. These sub-gadgets do not conform to the tra-
ditional requirements for ROP gadgets because they do not load
the return address from memory. To overcome this limitation, we
combine them with a traditional gadget that utilizes a different reg-
ister for the return address and loads both its and the sub-gadget’s
return address from the stack. We call this technique compounding
ROP gadgets. Figure 3 illustrates how traditional and sub-gadgets
are combined to form a compounding ROP chain.

This technique has other benefits besides expanding the gadget
set, such as using the available stack space more efficiently. Each
traditional gadget discovered in the runtime library increments
the stack pointer by an average of 86 bytes. On the contrary, the
sub-gadgets do not increment the stack pointer but re-purpose
otherwise wasted stack space. Many of these sub-gadgets are addi-
tionally helpful because they use different registers to implement
the same basic operations, which has been found to be a major
advantage for solving constraints during gadget selection and min-
imizing side effects on the CPU [67].

Expressiveness of the Gadget Set. We found that the gadgets
required to construct Turing machines and thus perform arbitrary

computations are readily available in CUDAkernels. The expressive-
ness of the resulting gadget chain is limited only by the availability
of niche gadgets that the attacker may need to implement their
desired exploit. We replicated all operation types of the MINDOP
language [68], which can be used to craft Turing-complete attacks,
using only the gadgets available in the runtime library, which are
accessible in every CUDA application. While this language was
initially designed to evaluate the expressiveness of Data-Oriented
Programming (DOP) [68, 69], we find a similar programming model
– where values are written back to memory after every operation –
which is also used in ROP Chains targeting RISC CPUs [45], to be
well-suited for ROP chains on GPUs as the number of callee-saved
registers is often large. Figure 3 shows this behavior. Here, the value
is loaded by a gadget, incremented by the next, and stored back in
memory by the final gadget. While the large variety of sub-gadgets
increases the length of chains that avoid writing to memory, it
remains impractical to propagate data between registers solely.

We identified only a limited number of gadgets that directly
implemented common arithmetic operations. Specifically, we found
one incrementation gadget and one addition gadget. However, we
can combine these gadgets with other sequences, particularly con-
ditional jump gadgets, to create sequences that perform other arith-
metic operations, such as multiplication and subtraction.

Gadgets in Common CUDA Libraries. Previous work did not
identify any gadgets in libraries such as CuBlas [70], CuDNN [71],
and Torch [72], due to the absence of functions that push their re-
turn address to the stack [38]. Our examination of these libraries
showed that they still contained usable sub-gadgets that improve
the gadget set’s expressiveness. Tensorflow [73], which was not an-
alyzed by previous work, additionally included traditional gadgets.
We summarize the gadgets found in each library in Table 1.

While the expressiveness of gadget sets from smaller libraries
is often limited, they offer gadgets that enable more efficient ROP
chains, requiring less stack space and allowing for more arithmetic
operations, such as shift operations. Moreover, larger libraries fre-
quently provide gadgets that can access different GPU memory
spaces, which relaxes the need to use generic load/store instruc-
tions. Finally, we found that some libraries even include gadgets
that overwrite the stack pointer, enabling stack pivoting [74], which
forms the basis for conditional jumps between gadgets, loops, and
expressive ROP attacks that can perform arbitrary computations.
However, the CUDA stack pointer represents an offset from the
start of the local memory region and, therefore, can not point to
other memory regions, such as the heap, as is common on the CPU.

5.2 Exploiting CUDA Applications
The first step in exploiting a CUDA application is to find a function
that contains a memory corruption vulnerability. An attacker will
exploit this vulnerability to inject their ROP chain into the stack and
overwrite a value that will eventually be loaded into the program
counter. This can be achieved by overwriting a function pointer or a
return address. However, since CUDA programs often do not write
their return address to the stack, this process is potentially more
difficult than on the CPU. An attacker will analyze this function’s
memory layout by analyzing the program offline, if available, or
using reverse engineering techniques. This involves identifying
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Source Guo et al. [38] This Paper
Total Gadgets Traditional Gadgets Sub Gadgets Total Unique Gadgets Store Gadgets Load Gadgets Stack Pivoting Gadgets

Runtime Library 52 278 8 72 ✓

CuBlas [70] 0 0 34 22 ✗

CuDNN [71] 0 0 1197 315 ✗

Torch [72] N.A. 0 8317 4086 ✗

Tensorflow [73] N.A. 606 9295 4064 ✓

Legend: - None - Global Memory - Shared Memory - Local Memory - Generic Memory ✗ - No ✓ - Yes
Table 1: Analysis of Gadget Sets Found in Various CUDA Libraries

(a) Original stack (b) Stack with canaries

Figure 4: Stack Layout of the Vulnerable Function

where specific values, such as the return address, are positioned
relative to the starting point of the write primitive and identifying
the size of the stack frame. Figure 4a displays the memory layout
of the vulnerable function in the victim program.

Another requirement is to find the correct “magic” values. These
are essential for determining the gadgets’ addresses and using lo-
cal memory. We identified two ways of leaking these. The easiest
method is through a buffer overread, which discloses a part of the
CUDA executable loaded into memory. Certain opcodes, such as
call instructions, contain these “magic” values at runtime.

Another approach is to leak part of the constant memory. In
this memory space, the driver loads a data structure resembling the
CPU’s Global Offset Table (GOT). We use the function pointers in
this table to calculate the runtime library code’s “magic” value.

Bypassing Common Mitigations. Stack canaries and ASLR
have been standard mitigations on the CPU for decades and are
also supported on CUDA GPUs. However, despite forming the only
line of defense on current-generation GPUs, we find them to be
weaker than their CPU counterparts.

In NVCC, stack canaries can be activated using the device-stack-
protector option and take the form of eight bytes: one byte set to zero
and seven randomized bytes. As illustrated in Figure 4b, these bytes
are positioned between local variables and callee-saved registers,
which includes the return address if spilled. After these registers are
saved, NVCC’s implementation reads the canary value from con-
stant memory and stores it on the stack. At the end of the function,
these bytes are verified against fresh values obtained from constant

memory before restoring the register content. We identified two
issues with NVCC’s implementation of stack canaries.

First, NVCC only inserts stack canaries in functions it deems
“high-risk” [49], according to a heuristic in the compiler. However,
we successfully used one of these “low-risk” functions to overwrite
the return address and subsequently hijack the control flow. We
discovered that NVCC does not insert a canary when a function
has a relatively small stack frame, specifically when it contains no
buffer larger than 40 bytes. To address this issue, we recommend a
comprehensive revision of this heuristic, for example, using static
analysis to confirm that all memory accesses within a function are
safe and only omitting the stack canaries if this condition is met.

The second issue arises from the interplay between error han-
dling and canary re-randomization. When CUDA kernels throw an
exception, e.g., due to a failed canary check, they terminate. How-
ever, the host process continues executing, and any subsequent
kernel this host launches will use the same canary values. This
effectively implements a crash-resistant oracle [75], in which the
attacker can repeatedly attempt to leak or brute-force the GPU
stack canaries. Even though there are 256 possible canary values,
given a byte-granular write primitive, an attacker can brute-force
the canary value in at most 1792 (7 × 28) tries due to this weakness.
We recommend that each CUDA kernel gets its own randomized
canary value in constant memory to prevent this exploit. Since
launching a new kernel is already a high-overhead operation, we
expect the introduced performance impact will be negligible.

Building on previous work [25, 38, 76], we find that ASLR ran-
domizes up to 20 bits of certain virtual addresses through the CUDA
runtime on GPUs. Nevertheless, like canaries, these bits are only
re-randomized at process launch, making them susceptible to leak-
age and brute-force attacks. Contrary to previous work [25, 38],
we found that ASLR on the GPU also randomizes the addresses
of code pages, including those of the driver API. Because CUDA
programs compiled without debug symbols often use relative ad-
dressing for indirect control-flow transfers, an attacker does not
rely on absolute addresses as commonly required on the CPU. Since
the current implementation of ASLR on CUDA does not randomize
these relative offsets, instead, using a single offset for all code pages,
ASLR forms a mere nuisance for attackers.

Preventing Divergences. Approximately one in three gadgets
includes a synchronization instruction, such as BSYNC, which causes
threads to yield and block until all threads within the warp reach
the same convergence barriers. Incorrect usage of these gadgets
will cause the program to enter a deadlock. We find it impossible to
avoid these instructions when crafting expressive ROP chains, as
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generally every gadget that operates on memory, such as a store or
atomic operation, also executes a synchronization operation before
returning. Therefore, an attacker must prevent divergences. This
can be achieved by hijacking all threads uniformly, i.e., providing
them with the same ROP chain so they perform exactly the same in-
structions and, thus, never diverge. Divergences could be supported
by filling the barrier registers with attacker-controlled values.

Injecting the ROP Chain. To generate the input, an attacker
would combine the information outlined in the first part of this
section. They would first leverage their knowledge of the memory
layout to overwrite the stack canaries with their original valid
values and replace the return address with the address of the first
gadget. Beyond the original stack frame, the attacker would insert
important values for subsequent gadgets, such as the address of
the next gadget and values intended for registers. The stack space
following this frame limits the length of the ROP chain. However, we
find that above the stack used by the kernel and subsequent device
functions, a region of 800 bytes is reserved for certain runtime
library functions. Since this region is unprotected, an attacker can
use it to place their ROP chain. Using stack pivoting techniques [74],
the attacker can expand the available space by placing part of the
ROP chain elsewhere in local memory, specifically in the buffer’s
initial portion before the stack canaries and return address.

6 Discussion and Future Work
The available gadgets vary with CUDA toolchain and driver ver-
sions. A new gadget set must compile whenever NVIDIA updates
the device-side runtime library. Thus, attackers need to know the
victim’s CUDA version. Changes in this API could allow NVIDIA to
redesign it, removing all (powerful) gadgets. This section illustrates
how NVIDIA may achieve this and how attackers might bypass it.

Many of our ROP chains, particularly conditional jump sequences,
depend significantly on gadgets that load the stack pointer from
memory. We find that these gadgets are readily available. Specifi-
cally, we identified 104 gadgets in the runtime that can serve this
purpose. Consequently, a thorough overhaul of the runtime library
would be essential to remove all these instances, as the functions
associated with these gadgets play a vital role in executing features
usually managed by the OS kernel on the CPU, such as system calls.

Another strategy NVIDIA could consider involves eliminating
all traditional gadgets, as an attacker cannot initiate a ROP chain if
their gadget set consists entirely of sub-gadgets. While this would
hinder attackers from exploiting the runtime library, we demon-
strated that, contrary to previous assumptions [38], commonly used
libraries contain both traditional ROP gadgets and sub-gadgets, in-
cluding ones that can facilitate conditional jumps in the ROP chain
and access all memory spaces. Which makes expressive ROP chains
without using the runtime library possible. Additionally, NVIDIA
would have to rework the implementation of recursive functions.

Similar objectives, namely gadget-free compilation, have been
proposed on the CPU [77–80]. However, they failed to eliminate all
gadgets, opening the door for other techniques, such as return ad-
dress protection using a shadow or safe stack [81–86], Code-Pointer
integrity (CPI) [87–89], and Control-Flow Integrity (CFI) [90–94].
Future work should assess these techniques as they might prove
viable for protecting against ROP attacks on GPUs.

Furthermore, future work should focus on developing tools that
automatically chain CUDA ROP gadgets together to achieve the at-
tacker’s desired outcome. Similar tools exist on the CPU and clearly
indicate the threat posed by ROP [67, 95–97], as such they form a
clear motivator for developers to build effective protection mech-
anisms against ROP attacks. Finally, future work should evaluate
GPUs from various manufacturers and other types of auXiliary
Processing Units (XPUs), as they may share vulnerabilities similar
to those of CUDA-enabled NVIDIA GPUs discussed in this paper.

7 Related Work
Research on memory errors on GPUs remains underdeveloped.
Foundational works by Di et al. [36] and Miele [37] demonstrated
buffer overflows on GPUs, nearly a decade ago. Nevertheless, more
recent studies on GPU security focus on aspects such as information
leakage between different processes and tenants [12, 14–23].

Recent attacks by Guo et al. and Park et al. rely on the exploita-
tion of memory errors and ROP to corrupt deep learning models
using control flow hijacks [25, 38]. While both papers offer valuable
insights into memory errors on GPUs, their attacks do not fully
demonstrate the true potential of ROP on GPUs and fail to prove
that arbitrary computation is possible using ROP. Both use it to
construct an arbitrary write primitive to overwrite code pages or
corrupt ML model weights. Hence, neither paper demonstrates that
ROP can function as a standalone effective attack vector on GPUs.

Defensively, various sanitizers aim to detect GPU memory errors
during pre-deployment testing [57–63]. Academics have proposed
mitigations to protect GPUs from memory error exploitation [51–
56], but none have gained real-world adoption. They typically ei-
ther slow program execution excessively [57–60], fail to cover the
entire GPU memory space [51, 52, 62], neglect non-adjacent Out-
of-Bounds accesses [51–53, 57–61], fail to detect errors quickly
enough [51, 52], or require hardware modifications, making them
incompatible with commodity GPUs [54–56].

8 Conclusion
This paper demonstrates that code-reuse attacks pose a greater
threat to GPU systems than previously thought. Using compound-
ing ROP chains, we significantly increase the number of gadgets
in the CUDA runtime library and external libraries, drawing in-
spiration from CPU-based code-reuse attacks. We show that the
runtime library and other libraries provide gadgets that can perform
arbitrary computations on the victim. Furthermore, we found that
the only deployed protection mechanisms, such as ASLR and stack
canaries, do not prevent these types of exploits on the GPU. We aim
for this paper to serve as a call to action. We find that the GPU space
urgently needs a robust protection mechanism that leverages the
strengths of GPUs to address the shortcomings of existing systems.
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