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Samenvatting

Multi-variante Uitvoeromgevingen (MVUO’s) beloven uitgebreide bescherming tegen aan-
vallen op basis van geheugenfouten door meerdere gediversifieerde varianten van hetzelfde
programma parallel uit te voeren, waarbij de toestand van het programma op bepaalde
Rendez-Vous Punten (RVPs) wordt gecontroleerd en vergeleken. Bestaande programma’s
kunnen zich echter van nature niet-deterministisch gedragen wanneer ze worden onderwor-
pen aan bepaalde vormen van diversificatie die een typische MVUO of besturingssysteem
toepast. Een opmerkelijk probleem is Adres-Gevoelig Gedrag (AGG), waarbij specifieke
adreswaarden de control flow van een programma bëınvloeden of de staat ervan op het
moment van de RVP’s aanpassen, wat goedaardige divergenties in de MVUOs veroorzaakt.
Hoewel dit de toepasbaarheid van MVUOs in de praktijk beperkt, bestaat er geen eerder
werk dat de volledige reikwijdte van dit probleem verkent. Dit werk beoogt die leemte op
te vullen en onderzoekt de verschillende manieren waarop AGG wordt uitgeoefend door
programma’s in de praktijk.
We presenteren een overzicht en categorisatie van het probleem om de oorzaken en gevol-
gen ervan te belichten, alsmede om een theoretisch referentiekader te scheppen. Bovendien
onderzoeken we in detail de mogelijkheid om het AGG van een programma automatisch
te verwijderen of te neutraliseren met behoud van maximale diversificatie. We stellen
verschillende strategieën voor die we evalueren op basis van criteria zoals doeltreffendheid,
veiligheidsimpact en prestatie-overhead. Sommige van de strategieën in dit werk kunnen
alle door ons onderzochte voorbeelden van AGG op transparante wijze onderdrukken.

Trefwoorden: Niet-determinisme, Multi-Variante Uitvoeringsomgevingen, Geheugenlay-
outdiversificatie, Adresgevoelig Gedrag
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Abstract

Multi-Variant Execution Environments (MVEEs) promise comprehensive protection against
memory error exploitation attacks by running multiple diversified variants of the same pro-
gram in parallel, monitoring and comparing program state at certain Rendez-Vous Points
(RVPs). However, real-world programs can naturally behave non-deterministically when
subjected to some of the diversification a typical MVEE or Operating System (OS) em-
ploys. A notable issue is Address-Sensitive Behaviour (ASB), where specific address values
influence the control flow of a program or taint its state at the RVPs, triggering benign
divergences in MVEEs. Although this limits the applicability of MVEEs in practice, no
prior work exists that explores the full scope of this problem. This thesis aims to fill that
gap and to investigate the various ways in which ASB is exercised by real-world programs.
We present an overview and categorization of the problem to highlight its causes and con-
sequences, as well as to define a theoretical frame of reference. Additionally, we examine
the possibility of automatically removing or neutralizing the ASB of a program while re-
taining maximal diversification. We propose and analyze several strategies and evaluate
them on metrics like efficacy, security impact and performance overhead. Some of the
strategies we provide are able to transparently mitigate all the examples of ASB that we
surveyed.

Keywords: Non-determinism, Multi-Variant Execution Environments, Memory Layout
Diversification, Address-Sensitive Behaviour
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Chapter 1

Introduction

Today’s most widely-used low-level programming languages (C and C++) are fundamen-
tally memory-unsafe because of their lack of enforced bounds-checking or restrictions on
memory accesses, opening up applications to a wide array of memory-related exploitation
attacks, such as buffer overflows and use-after-free. A promising mitigation strategy in
this space is the use of Multi-Variant Execution Environments (MVEEs) where N variants
of the same program run in lockstep, supervised by a monitor that feeds them the same
input and terminates execution should they diverge from each other. The variants are
generated from the same program using software diversity techniques, making it hard for
an attack to have the same effect in all of them at the same time.
The state-of-the-art in these systems is ReMon [1], which consists of the ptrace-based cross-
process monitor GHUMVEE [4] and a highly efficient in-process monitor (IP-MON). Re-
Mon intercepts variants at every system call1 and compares their arguments to determine
if they have diverged. This is referred to as a monitor with system call granularity. In gen-
eral, the points at which MVEEs intercept variants are called Rendez-Vous Points (RVPs).

Some of the software diversity techniques amplified by Multi-Variant Execution Envi-
ronments (MVEEs) apply Memory Layout Diversification (MLD) to the variants. These
techniques include, among others, randomizing memory allocators [5, 6], reversing the
direction of the stack [7, 8] and Address Space Layout Randomization (ASLR) [9]. Key
here is to not just provide a merely randomized layout for the respective processes’ stack
and heap segments, but rather to ensure that equivalent code segments are guaranteed
not to overlap when comparing the variants’ address spaces [10], since that ensures that
gadgets (small pieces of executable code that can be chained together to perform arbitrary
executions [11]) cannot be reliably jumped to in all variants at the same time. Meanwhile,
previous research has shown that the execution of programs is not consistent in the face
of changing memory layouts [4]: they will produce different results, follow different code
paths or have different side-effects depending on where the memory they use actually
resides in the address space. This is called the Address-Sensitive Behaviour (ASB) of a
program, and since MVEEs consider variants that do not execute the same system calls
with equivalent arguments to be malicious, this causes a lot of real-world software to trig-
ger benign divergences and currently contributes to the limited applicability of MVEEs in

1Some system calls are considered security-sensitive and handled by GHUMVEE while the others are
forwarded to IP-MON.

3



1 Introduction 4

practice.

Apart from Volckaert et al., few researchers have reported on this problem [4] and there
has been no previously published work detailing the scope of it. In this thesis, we therefore
make an effort to provide a first complete overview of ASB. In addition, we present failing
and promising techniques for both detection and mitigation in the hope of moving the
MVEE community a step closer towards a general solution for address sensitivity in the
context of security-oriented MVEEs and to serve as a background for future research.

We aim to provide a flexible design that supports as much diversification as possible,
including but not limited to ASLR and the use of different allocation algorithms in the
variants. Variant generation processes and the MLD they employ evolve continuously,
driven by new research insights. Address-sensitivity remains prevalent as long as any
memory layout diversification is applied though, so it is important that a solution is able
to adapt to current and future methods.

The content of this work is laid out as follows: in Chapter 2, we provide some back-
ground information about the concepts that are important to understand the rest of this
work. Chapter 3 provides an overview of address-sensitive behaviour detailing the vari-
ous ways in which it can appear and categorizes it based on its causes and its effects at
the RVP-level. In Chapter 4 we present a series of approaches for the detection of ASB
at its introduction into the program and the automatic mitigation of its effects, as well
as a reflection on their shortcomings, specifically the security impact they entail. After
that, Chapter 5 lays out the implementation details of an approach that was tested in
practice to motivate some properties that constrain/optimize its performance and then in
chapter 6 we critically evaluate the prototype implementation on metrics such execution
speed and ASB coverage. We also benchmark its transparency on the GNU core utilities.
Finally, Chapter 7 concludes this work and summarizes the key insights and contributions
of thesis. Additionally, we make a look to the future and propose some adaptations of the
current system to improve its performance on the different metrics.

The direct proceedings of this thesis outside of the main text constitute a set of patches
and passes for the Clang compiler [12] and an interposer library that links into the tar-
get application. All of the code produced as part of this work is hosted on GitHub at
github.com/ku-leuven-msec/masterproef-20202021-adriaanjacobs.

github.com/ku-leuven-msec/masterproef-20202021-adriaanjacobs


Chapter 2

Background

Memory errors such as buffer overflows and use-after-free bugs, ubiquitous in programs
written in memory-unsafe languages such as C and C++ [13], can be exploited by inter-
acting with the program in an unexpected way. This was famously first demonstrated on
a large scale by the Morris worm in 1988 [14] and many more exploits as well as miti-
gation strategies have been presented ever since [15]. One such techniques is the use of
software diversity to transform programs in a way that does not change their semantics1

[16] such that it becomes harder for attackers to construct exploits based on the memory
layout of a program2, in the case of Memory Layout Diversification (MLD). Some of these
techniques have seen widespread adoption, most notably the use of Address Space Layout
Randomization (ASLR) on modern operating systems [9]. However, even though software
diversity techniques raise the bar for attackers, they do not fundamentally prevent attacks
from explicitly targeting the applied diversity and neutralizing it [10]. This is exemplified
by the repeated bypassing of ASLR in recent years [17].

Multi-Variant Execution Environments (MVEEs) amplify software diversity techniques
by running multiple diversified variants of the same program in parallel, monitoring their
behaviour and providing the same input to all of them. If the monitor notices that the vari-
ants are executing different code, it considers this a divergence and terminates execution.
Since all the variants are diversified differently but receive the same inputs, a successful
attack needs to bypass the diversification of all variants at the same time without being
able to interact with them individually. Volckaert et al. showed that an MVEE itself can
additionally employ supplementary diversification that ensures that Return-Oriented Pro-
gramming (ROP) attacks cause a divergence among the variants [10], protecting programs
ran inside an MVEE from an important class of attack vectors.

The concept behind security-oriented MVEEs was originally introduced by in 2006 by Cox
et al. [18] and has seen significant research interest over the years due to its promise of
comprehensive security with low run-time overhead: because a lot of programs typically
do not make use of the available parallelism on modern hardware [19], the overhead of
running multiple variants at the same time is relatively small [1]. The current state-

1Provided it is free of errors.
2Note that software diversity is broader than merely memory layout diversification. However, we are

primarily concerned with MLD in this work.
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2 Background 6

of-the-art is in MVEEs is ReMon, which intercepts the variants at every system call.
Alternative granularities for monitoring have been proposed [2], but system call granularity
has prevailed because it provides an attractive balance between performance and security:
it is assumed that, to have any real influence on a system, an attack would eventually
need to execute system calls. At the same time, they are executed infrequently enough
that the overhead associated with intercepting and, in some cases, syncing variants on
them is limited. To reduce performance overhead even further, ReMon uses an in-process
monitor (IP-MON) that handles security-insensitive calls like gettimeofday, whereas
a cross-process monitor (CP-MON) called GHUMVEE handles the other system calls, as
illustrated by Figure 2.13. However, the distinction between these is irrelevant for this
work.

Figure 2.1: “ReMon’s major components and interactions.”, source: [1].

To verify if two system calls are equivalent, Salamat developed a formalization of what
equivalent system calls are across the variants [19]. Non-pointer arguments must be equal
and for pointer arguments, the allocation contents they refer to are compared instead.
These allocation contents can either be an opaque buffer like in the case of the write
system call, or a structured buffer such as the array of iovec structs that writev
takes. If any information about the layout of a buffer is known, the rules for argument
equivalency are recursively applied. If not, the buffers must be equal byte-per-byte.

The exception that this formalization makes for pointer arguments already highlights the
problem that this thesis tries to solve. Because of the diversity in the variants, introduced
by ASLR but also techniques like randomized function frame padding [5] or the use of
different dynamic allocation algorithms [6, 5], the pointer values that refer to logically
equivalent objects and allocations are different in the variants. Hence, pointer arguments
cannot simply be compared for equality to determine their equivalency.
However, the influence of the diversified memory layouts of the variants on the system calls
they execute does not remain limited to these different pointer arguments. Because the
order and structure of allocations is different in the memory of each variant, the contents
of uninitialized data like padding bytes between struct members may also be different.
When writing out struct contents to a pipe or file using write, the buffer contents will
differ [20]. More trivially, if the struct has a pointer member in the first place, the buffer
contents will also be different. To the monitor, it is opaque whether the content of these

3The word “replica” is also used to refer to a variant. For more information about the internal operation
of ReMon, depicted in this figure, we refer to [1].
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buffers is different as part of some kind of exploit or because of uninitialized data and it
will terminate execution in the variants.
The influence of memory layout on the variants is additionally not limited to modifying
only the arguments to the same system calls. The control flow of a program can be com-
pletely different based on which specific memory layout it faces. Volckaert et al. report on
hash tables with pointers as keys that grow/rehash at different moments in the variants
because the pointers, due to their pseudo-random value, are distributed differently over
the buckets. Any iteration over such a hash table also accesses the pointers in a different
order, potentially leading to entirely different code being executed in the variants. All
of these cause benign divergences, making the monitor terminate execution without any
malicious code being executed.
When the behaviour of a program depends on its memory layout as in the aforementioned
cases, that is called Address-Sensitive Behaviour (ASB).

In the next chapter, we investigate these and more cases in more detail and propose
categorizations for ASB.



Chapter 3

Address-sensitive behaviour

In this chapter we investigate the nature of address-sensitive behaviour in detail. First,
we provide a series of examples of programming constructs that introduce ASB into a
program. With this, we intend to help build intuition about the problem, as well as
provide a benchmark to evaluate categorization, detection and mitigation efforts against.
Secondly, we propose a definition of ASB, covering at least all examples provided in this
chapter. Lastly, we discuss the categorization of ASB based on different commonalities
among its causes and effects.
As a frame of reference for the following sections and rest of the thesis, we introduce some
terminology and assumptions below:

1. What constitutes a divergence depends on the monitoring granularity of the MVEE.
For this section and in the rest of this work we assume a system call granularity
and define the equivalence of system call sequences according to the formal rules
Salamat provides [19]. We then define any divergence as a non-equivalent system
call sequence in the variants. This is in line with how some modern state-of-the-art
MVEEs monitor execution: they assume that system calls are invoked relatively
infrequently but are nonetheless required in order for an attack to have meaningful
influence on a system [2]. This is an attractive balance of security and performance
for most MVEEs.
Secondly, since this work is concerned with removing false positives, we always use
the term divergence to refer to benign divergences, unless otherwise specified.

2. Logical allocations are allocations that, irrespective of the address at which they
reside, represent the same logical piece of memory that every variant operates on.
They are allocated and deallocated in the variants from the same call sites and can
represent both dynamically and statically allocated blocks. They correspond to the
same objects in all variants, in the terminology of the C11 standard [21, Chapter 3].

3. To encourage generality, flexibility and applicability of potential mitigation strate-
gies, we consider a hypothetical form of diversification in this analysis that makes
every logical allocation in the program have a potentially different virtual address
in the variants. Essentially, no assumptions can be made about the variant-specific
address of a logical allocation in a program; neither that it is consistently the same
nor that it is consistently different except in places where the Application Program-
ming Interface (API) explicitly provides such constraints, e.g. MAP_FIXED [22] or

8



3 Address-sensitive behaviour 9

aligned_alloc [21, Section 7.22.3.1]. However, we assume that MLD does not
include the use of different primitive type widths or struct layouts. More gener-
ally, we assume that logical allocations are equal in size in all variants and contain
the same logical values at the same offsets. There have been MVEEs that diversify
even these properties, most notably distributed MVEEs that run variants on dif-
ferent physical machines with different CPU architectures to further diversification
[23, 24, 25].
We evaluate in later chapters to which end this maximal diversification can be sup-
ported while successfully neutralizing all ASB.

4. We do the analysis of the issue here for a C/C++-like language where memory
addresses are explicitly modifiable or inspectable values in the source code. In lan-
guages with implicit references like Java, address-sensitive behaviour could definitely
still occur, e.g. via the most common Object.hashCode() implementation [26],
using an Object as key in HashSets or HashMaps etc., but we make no further
effort to explicitly relate the concepts laid out in this work to those languages or
paradigms.

5. We take concepts and terminology from a Linux environment and little-endian ar-
chitecture. However, they should apply to most modern desktop operating systems
that use a flat memory model and virtual memory management, potentially under
a different name.

6. We assume that whenever memory addresses are introduced into a program, e.g.
through an allocation call, they initially appear in source code with a pointer type,
i.e. T* for T any type. This facilitates discussion: although it would be possible for
an implementation to provide a malloc prototype that returns an instance of long,
this would not be a standards-conforming implementation [21, Section 7.22.3.4] and
it is not done by any major vendor. Note that this does not mean that we always
assume every instance of pointer type to be a memory address, nor every memory
address to be an instance of pointer type.

7. We interpret (allowed) operations broadly in the discussion below, covering all op-
erations that most modern compilers such as Clang [12], GCC [27] and MSVC [28]
support or can be made to support via compiler flags, unless otherwise specified.
This includes many operations that are technically undefined, unspecified or imple-
mentation defined behaviour according to the C11 or C++17 standard, but since
their use is widespread [29], there is little practical value contributed by a system
that supports only strictly well-defined programs.

3.1 Examples of ASB that cause benign divergences

By no means is this an exhaustive list of every possible way in which a memory address
can be used to alter system call sequence, but we cover a selection of the most prevalent
cases here.
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Pointer as key in hash table

A common way in which ASB manifests itself inside a code base is through the use of hash
tables, where pointer values are used as keys.
The way a hash table works is that upon insertion a key is transformed into a different
value through a hash function and then used to calculate an index into a contiguous
array of buckets to find a bucket where the key is then placed. Commonly, this is done
by applying a modulo operation using the hash value and the amount of buckets in the
table, called its capacity. The bucket where a specific key resides can then be found in
O(1) time-complexity by applying the same process again to that key, which is the main
advantage of a hash table. However, multiple keys might hash to the same value and the
set of possible hashed values is typically significantly bigger than the amount of buckets
present, so the bucket at the index that was calculated for a specific key might already
contain multiple other entries. When that happens, those keys are stored next to each
other inside the same bucket and upon retrieval the right key in the bucket still needs to
be found after finding the right bucket for a specific key. If the amount of buckets is small,
they will quickly contain relatively many keys and the look-up process will slow down.
This is often mediated by monitoring the amount of keys being stored in the buckets
and growing the hash table if a certain threshold is reached. Since the growing operation
affects the capacity of the table, the positions of all entries need to be recomputed.
It is important to note that the API of this basic hash table does not provide any guarantees
about the internal ordering of the keys by itself due to the typically hard-to-predict nature
of the hash result. The only guarantee is that the same set of keys will produce the same
internal ordering in the hash table every time. Therefore, when a hash table is used with
pointers as keys, the most straightforward iteration over the buckets, i.e., according to
their internal ordering, will pass the inserted pointers in a seemingly unrelated ordering
compared to their insertion order. This is the first way a hash table can introduce ASB:
if it is iterated over, different actions could be taken based on the pointer value that is
assessed, and those actions might eventually cause a diverging system call pattern. The
most straightforward example would be releasing the memory the pointer values refer to
during the destruction of such a hash table, potentially causing pages to be unmapped in
a different order, or not at all, in some variants.
The second way a hash table can cause ASB is through the condition that determines
when the capacity should be increased: this will typically not only take into account just
the total number of keys present, but also the average and maximum entries in a bucket
or the number of non-empty buckets. Since the amount of keys in a bucket depends on
the values of the keys themselves via the amount of collisions that happened, the decision
to grow the table will inevitably be taken after a different amount of insertions in the
variants. Since growing the table could end up requesting more memory from the OS via
a system call this could again cause a divergence.

Checking the alignment of a memory address

Many applications check the alignment of a memory address to a certain boundary at some
point using a variety of integer arithmetic. This leads to two distinct types of address-
sensitive behaviour: one where pointer values are modified in an address-dependent way
such that they do not refer to the same logical byte in the variants anymore, and another
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where the alignment of a pointer value to certain boundary is part of a conditional eval-
uation that determines control flow in the variants. For example, Volckaert et al. report
that glibc’s ptmalloc implementation requires that every new region it uses is aligned on
a 1MB boundary. To achieve this, it mmaps a region of 2MB, finds a 1MB aligned pointer
inside it and munmaps the unneeded pages above and below it, as shown in Figure 3.1.

Figure 3.1: “Aligned allocation in ptmalloc”, source: [2].

The 1MB aligned pointer value will be at a different offset into the 2MB region in all
variants, because mmap only guarantees that it will return pages on a 4KB alignment
[22]. Hence, one variant might get a region starting at one page before the next 1MB
boundary, whereas another might get a page just after a 1MB aligned one, putting the
next 1MB aligned pointer somewhere in the middle of the region. Therefore, the sizes of the
regions that ptmalloc unmaps will be different in the variants, leading to a divergence.
GHUMVEE implements a dedicated fake system call to support this [2].

Using relative pointers

Out of memory efficiency concerns, an application may not use a certain pointer variable
to refer to an absolute memory location, but rather interpret it as the offset to another
memory location. This can be both the location of the offset itself (called self-relative
pointers) or some other pointer entirely. If the program can guarantee that this offset will
be small enough to fit in a integer type smaller than the platforms pointer size, space can
be saved. MSVC even supports an extension of the C++ language for this called based
pointers [30].
According to the C++17 standard the behaviour of pointer subtraction is undefined when
the pointers do not point to the same array object [31, Section 8.7.5]. However, on typical
implementations, the result is equivalent to the difference of the integer representations
of both pointers. Therefore, when computing offsets via pointer subtraction across alloca-
tions, a dependence on memory layout is introduced and when allocations are diversified
this will give different results in the variants. This does not necessarily lead to a divergence
and the resulting value will typically only be used to reconstruct some other pointer value
somewhere else, but they do introduce another address dependent value into the program,
usable for other ASB. This is exemplified by Listing 3.1.
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std::vector<int32_t> rel_ptrs;
char* base_ptr = (char*) malloc(sizeof(some_struct));
size_t N = 10;
for (int i = 0; i < N; i++)

rel_ptrs.push_back((char*)malloc(sizeof(some_struct))
- base_ptr);

std::sort(rel_ptrs.begin(), rel_ptrs.end());
std::vector<some_struct*> abs_ptrs;
for (auto rptr : rel_ptrs) {

some_struct* abs_ptr = (some_struct*)(base_ptr + rptr);
printf("abs_ptr: %p \n", abs_ptr);

*abs_ptr = { /* data */ };
abs_ptrs.push_back(abs_ptr);

}

Listing 3.1: An example address-sensitive use of relative pointers

Due to the std::sort operation, perhaps for improved cache locality, the rel_ptrs
will be iterated over in a different order in all the variants in the second for loop when
absolute pointers are reconstructed from them. Therefore, the printf operation will
immediately cause a divergence.

Passing a pointer value to a system call

One of the most straightforward ways of causing a program to exercise ASB is by using
one of the many system calls that take a pointer value as one of their arguments. In
current MVEEs, this will actually not be considered a divergence. According to Salamat’s
formalization of system call equivalence [19], pointer arguments are not checked for equality
the same way this is done for non-pointer arguments, but rather the memory contents they
refer to are compared. This specification inadvertently allows a bit of leeway for system
calls to be considered equivalent even when their pointer arguments refer to different
logical allocations, as long as the contents they refer to are equal. The snippet in Listing
3.2 demonstrates a program that currently does not cause a divergence in typical MVEEs,
but would if stronger equivalence checks existed on pointer arguments.

const char string[] = "Always the same";
std::unordered_set<char*> strings;
for (int i = 0; i < 10 ; i++)

strings.insert(strdup(string));
for (auto s : strings)

write(STDOUT_FILENO, s, sizeof(string));

Listing 3.2: A snippet demonstrating the difference between
pointer equivalence and allocation content equivalence

checking.

Because std::unordered_set is most commonly implemented using a hash table, the
iteration in the second for loop will happen in a different order, executing write system
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calls that operate on different logical allocations. A current MVEE like GHUMVEE will
not see any divergence though, as the allocations that are referred to have the same con-
tents on every call. We found no prior research that investigates the security implications
of this leniency. One class of attacks that could benefit from this are Time-Of-Check To
Time-Of-Use (TOCTOU) attacks, where, in an MVEE context, the attacker tries to mod-
ify the contents of system call arguments in the small time window after they are checked
by the monitor but before the system call completes [2]. Since this relaxed checking allows
for any allocation to be validated by the monitor as long as its contents are equivalent
to those in other variants, this broadens the range of logical allocations an attacker could
potentially use to circumvent monitor checks. No research exploits currently exist that
abuse this leniency though.
Note that the exception for pointer arguments in Salamat’s formalization can already be
regarded as a mitigation effort for ASB.

Passing a buffer containing a pointer value to a system call

When writing out a structure or buffer using a system call, a pointer to it is typically
passed in as an argument. If that structure or buffer contained a pointer value, that is
now present in the buffer passed to the system call and the monitor will detect that the
buffers differ across variants. For some system calls, the layout of the buffer is completely
unknown to the MVEE, such as for write: the character buffer that it receives could
be obtained by taking the address of some struct containing a pointer as a field, but it
could also be some string that is the same across variants. For other system calls, there is
a documented layout for the buffer such as for writev, which takes an array of iovec
structs. This case is then reduced to the “passing a pointer to a system call” case, since
the added difficulty of finding the pointer value in the buffer is absent. The pointer field
of the iovec struct itself also refers to a buffer, with a similarly obscure layout to the
one write takes. This highlights how one system call can incur multiple cases of ASB at
the same time: in the writev case the pointer to the iovec struct buffer (1), the
pointer contained in every iovec struct entry (2) and all the buffers that are referred
to from within the iovec struct by its pointer field (3) can all differ across variants.

Formatting a pointer value into a string

A common debugging strategy is to print out pointer values formatted into strings, typ-
ically in hexadecimal format. In fact, when enabling the debug mode on the loader that
GHUMVEE employs to achieve Disjoint Code Layouts (DCL) [10], the monitor immedi-
ately terminates when running multiple variants as the addresses where the stack is loaded
in the variants are printed to the standard output. The reason why this happens is obvi-
ous: since the pointer values are different their string representations are different as well.
This is another example of a whole secondary class of values possibly being containing
variant-specific address data: every string could potentially contain a formatted pointer
value, making every operation that manipulates strings a potential cause of divergences.
It’s also worth pointing out the subtle way in which this conversion happens, character-
istic of the libc functions providing this behaviour. They do not directly take a pointer
argument to format it into a string but rather accept a variadic argument list that is
then enumerated and interpreted based on a format string. This eliminates all type-safety
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making it impossible to know which arguments were originally pointer values without call
site context. Type checking variadic arguments has been the subject of research in the
past [32], because they can be abused in a similar manner to a buffer overflow as part of
an exploit.

Using an uninitialized variable

Automatic, register and heap-allocated variables in C11 are not default initialized [21,
Section 6.7.9.10]. This means that, if not explicitly initialized, in a typical language
implementation they will contain the memory contents of whatever part of the address
space they occupy the moment they are read. For stack variables this depends on the
depth and nature of the entire call stack up until that point, and for data allocated on the
heap this is determined by what the contents were of whatever was previously allocated
there, or typically 0 if the memory was freshly requested from the operating system1.
Clearly, when the memory layout of a program is changed, there can be no guaranteed
consistency across variants about which allocations occupy which previous allocations, or
even which function frames occupy which memory region on the stack in the general case2.
Therefore, these values could be different in the variants and using them in any way might
yield different results every time, leading to divergences down the road.
In real world code bases the use of uninitialized variables is mostly accidental, although
there exist cases where they are used as a low-entropy source of randomness, famously in
OpenSSL, popularized by a faulty Debian patch from 2006 leading to a major security
vulnerability until it was patched in 2008 [33].
In any case, every read from an uninitialized variable is undefined behaviour according
to the C11 standard [21, Appendix J2] and various tools already exist that can detect
[34, 35] or mitigate [36] it. This makes it stand out, as, contrary to most other ASB in
this overview, it is already actively being investigated.

Passing a buffer containing any kind of padding to a system call

Very similarly to the pointer-in-buffer case, if the buffer being passed contains a structure
that has been padded to satisfy the alignment of its members, that padding will typically
be uninitialized and depend on the underlying memory layout to determine its value just
like in the uninitialized variable case. This likely causes a divergence when passed to a
system call, as the monitor will compare the contents of buffers as well.

3.2 Definition of ASB

We consider an operation address-sensitive if its output is in any way influenced by the
memory layout of the program. Address-Sensitive Behaviour (ASB) is then defined as a
sequence of address-sensitive operations. The use of memory layout instead of pointer val-
ues is important to also include the effects of uninitialized data in the definition. Because

1For security reasons, modern operating systems zero out pages when they are mapped by a process
to avoid information leaks from another process.

2There have been MVEEs in the past that inserted different padding between function frames in all
variants to protect against information leaks through uninitialized reads [5].
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of this definition, all operations on pointer values are trivially considered ASB, as their
effect is influenced by the value of the pointer. However, this influence does not necessarily
cause a divergence. Consider the first few lines of the 64-bit strlen implementation of
glibc [37] in Listing 3.3.

size_t strlen(const char * str) {
const char *char_ptr;
for (char_ptr = str;

((unsigned long)char_ptr & (7u)) != 0;
++char_ptr)

if (*char_ptr == '\0')
return char_ptr - str;

// ... rest of implementation
}

Listing 3.3: First few lines of glibc’s 64-bit strlen
implementation

This implementation aims to optimize strlen by comparing multiple bytes of the string
at once to find a zero byte (not shown in Listing 3.3). This is only done starting from the
first address in the string that is aligned on an 8-byte boundary, which is why this first
loop checks for zero on a byte-granularity until that alignment is reached. That means
that there exist 8 different control flow paths through this snippet for the same logical
string in every variant, depending on how far the starting address of the string is from the
next 8-byte boundary. However, from an outside perspective, this address-sensitive loop
condition can never cause divergences since:

1. The returned string length will always be the same.

2. No global state is affected.

3. No system calls are made.

4. No invalid memory accesses happen3.

Hence, address-sensitive operations such as the repeated alignment check on the string do
not necessarily lead to divergences (i). Additionally, divergences are not always caused by
ASB, trivially illustrated by the very exploits MVEEs are designed to protect against (ii).
There do exist divergences caused by ASB though, as shown in the overview of real-world
examples at the beginning of this chapter (iii). Therefore, the relationship between benign
divergences and ASB can be modelled as in Figure 3.2.

3Provided that the string is null-terminated within the bounds of its allocation.
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Figure 3.2: Relationship between the set of operations that cause ASB and those that cause
divergences

Unsafe and safe ASB are defined in this context as operations that do and do not lead
to benign divergences respectively. However, this is not always an inherent property of
the operation itself. For example, if the loop body in the strlen example from Listing
3.3 contained a printf statement, that would be executed a different amount of times
in the variants, causing a divergence. Yet, even if the printf statement is added, this
strlen will never cause a divergence if it is only ever called for 8-byte aligned input
strings. Hence, the safety of the alignment check is not solely determined by its isolated
operation, but also by the code around it.

More generally, the only reason the printf statement was able to make this snippet
unsafe at all is because the definition of a divergence is set the way it is, namely to system
call equivalence. If full control-flow equivalence were required by the MVEE instead, the
unmodified strlen could undoubtedly already cause divergences. A similar argument
goes for MLD, as decreased diversification with more guarantees about consistent, non-
API guaranteed alignment between the variants could change the safety of the loop.
This shows a fundamental trade-off between monitoring granularity, ASB and MLD: the
coarser the monitoring granularity, the more ASB can be tolerated for a given amount
of MLD and vice versa. One of the purposes of this work is therefore to evaluate what
amount of MLD can be supported while retaining full ASB support in an MVEE with sys-
tem call granular monitoring. At the end of Chapter 4, this matter is revisited in greater
detail.

The context-dependence of the safety of ASB makes it hard to statically distinguish be-
tween safe and unsafe ASB in the general case. Consider the hash table example given
earlier in this chapter: it is certain that it can exercise unsafe ASB in the two possible ways
discussed, but it is not entirely clear at which point that ASB is actually introduced, or
rather, precisely which operation is address-sensitive. One could argue it is the conversion
from a pointer to an integer as part of the hashing computation. However, the resulting
integer could be converted back to a pointer without any ASB in some other context.
Other operations in the insertion process are subject to a similar argument about why
they are not inherently address-sensitive: one could alternatively argue that the moment
the index is computed and the key is inserted, ASB has occurred. Yet this could be the
only key in the hash table, in which case there can be no address-dependent reallocation
nor ordering. Additionally, the hash table could never be iterated over in the rest of the
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program, or the reallocation condition could take only the absolute amount of inserted
keys into account rather than their relative distribution over the buckets. Finally, even if
the hash table contained multiple entries, really were iterated over and the reallocation
condition was indeed address-sensitive, by sheer chance the index calculation could still
put the logical allocations in the same order in all variants. Therefore, to statically deter-
mine whether this hash table is unsafe ASB, the memory layout of all variants would need
to be predictable at compile time, counter-acting all MLD. In Chapter 4, we, therefore,
focus on the effects of considering a piece of safe ASB as unsafe and vice versa.

From the examples presented at the beginning of this chapter it can be observed that two
distinct types of variant-specific data are introduced into the program by MLD that cause
benign divergences: address values and uninitialized data. Although their effect on the
system call sequence can be similar, they differ greatly in both how they are used and why
they are introduced into the program in the first place.
The purpose of MLD, as discussed in the background section, is to ensure that manip-
ulations of memory at invalid locations, i.e. outside of logical allocations, yield different
results in the variants. To that end, it diversifies the pointer values used in the variants
such that invalid memory accesses cause divergences. However, this is only one semantic
use of a pointer value, namely to refer to a location in memory. There exist many other
semantic uses for pointer values or values derived therefrom in a program, such as to
uniquely identify a certain allocation (hash table), signify an ordering in memory (relative
pointers), or provide a pseudo-random value. These all inadvertently and inseparably get
affected by the diversification as well, even though that was never the goal of MLD, causing
benign divergences. Although it would be desirable to simply remove the diversification
from an ASB perspective, this is not possible due to the intended effect it has from a
security perspective.
There exists no such intended effect for the diversification of uninitialized data, which
is an additional, unintended consequence of MLD. All of its uses that cause divergences
are considered benign, hence “turning diversification off” for them can be done entirely
without ramifications from a security perspective.
Consequently, both of these types of variant-specific data benefit from different insights.
The analysis of ASB using pointer values has to consider both of their semantic uses
and requires a close examination of the specific operations that pointers support. This is
impossible to do while accounting for variant-specific values in their generality, as unini-
tialized data does not appear in these operations. Therefore, in the rest of this chapter,
both are covered separately.

3.3 Analysis of uninitialized data

The address-sensitive use of uninitialized data includes both the examples about unini-
tialized variables and padding. Although they can be used in non-address sensitive ways,
similarly to how alignment checks do not always lead to divergences, there is no harm in
considering all of its uses to be unsafe4, since the diversification they supply has no signif-
icant security benefit. In doing so, its very introduction into the program can equivalently
be considered unsafe in itself. Therefore, this section will focus on the different ways in

4Apart perhaps from a performance perspective.
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which uninitialized data can enter a program, rather than how it can be used to cause ASB.

All data is initially exposed to the program in an uninitialized except for variables with
static and thread storage duration. The C11 standard requires them to be initialized to
their stored value [21, Section 6.2.4] or essentially zeroed respectively prior to program
startup and at thread creation [21, Section 6.7.9]. Since other code can run before program
startup, these could technically be used in an uninitialized way but due to the implemen-
tation of the program load process adopted by most operating systems, this is not an issue
in practice. In the Executable and Linkable Format (ELF), uninitialized static variables
are placed in the .bss section of the executable which is zeroed out at load-time [38,
p.15]. Initialized static variables are placed in the .data section and their initial value is
encoded into the executable, so they are never uninitialized at all.
Other data such as the memory returned by calls to OS routines such as mmap [22] and
brk/sbrk [39, p.64] are typically zero-initialized (except for file mappings) by default.
Note that after a subsequent increase and decrease of the program break using (s)brk
the returned memory’s value is indeterminate [39, p.64].
The rest of this section overviews the methods in which uninitialized data can be acquired
by the program.

Uninitialized memory obtained via a dynamic allocation routine

The sequence of allocated blocks that are returned by a dynamic allocation routine does
not have a consistent ordering. Either it may be directly diversified by using a different
allocator in the variants [5, 6] or it may be affected by other diversifications such as
ASLR. This causes returned blocks of memory to occupy the space of different free blocks
or regions of metadata with different previous memory contents. Or, according to the C11
standard:

The order and contiguity of storage allocated by successive calls to the calloc,
malloc, and realloc functions is unspecified. [...] The malloc function al-
locates space for an object whose size is specified by size and whose value is
indeterminate.

[21, Section 7.22.3]. The same goes for the other dynamic allocation routines, except
calloc, which zero-initializes the memory.

Uninitialized stack data

Every time a new function frame is pushed onto the stack, the local variables contained
in it are not automatically initialized [21, Section 6.7.9]. Rather, whatever memory was
still there from the previous function call is typically still there. Even under only ASLR,
old pointer values from a previous function frame can still influence some next frame’s
uninitialized variables. Additionally, a stack is an implementation detail that is nowhere
defined by the C11 standard; segmented stack schemes, shadow stacks and stacks with
reverse growth direction are examples of different implementations of this concept in dif-
ferent variants. Some of these have been used before to increase diversity [7, 8], further
diversifying the content of uninitialized stack data. Therefore, no assumptions can be
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made about the value of stack variables that are used before they are explicitly initialized.
As mentioned before, doing so invokes undefined behaviour [21, Section 6.3.2.1.2].

3.4 Categorization of ASB caused by pointer values

Although it was determined earlier in this chapter that there can be no certitude about
the safety of address-sensitive operations in the general case, there can be more detailed
reasoning about safety for individual constructs. In the rest of this chapter, multiple
categorizations are presented that aim to give insight in the ways ASB is introduced into
a program and provide stronger guarantees about its safety in specific cases.
Note that the categorizations in this chapter only hold for ASB caused by pointer values,
not by uninitialized data. For brevity, this qualification is omitted in this section and ASB
is used to refer only to ASB caused by pointer values.

Categorization based on cause

It is clear that to have address-sensitive behaviour caused by pointer values, a necessary
prerequisite is that at some point a value is accessible in the program that represents a
memory address. Valid5, diversified addresses can be obtained from 3 sources:

1. A dynamic allocation routine, both application-level and OS-level, such as malloc,
mmap, or brk/sbrk. Routines that allocate on the stack such as the non-standard
alloca [40] are also included here.

2. An address-of operation (&).

3. A function or array decaying into a pointer [21, Section 6.3.2.1].

As these values are of pointer type upon introduction6, every possible form of ASB must
start with that pointer value. There does not necessarily need to be any operation applied
to it though. Passing a logical allocation containing a pointer value7 as an argument to
a system call is sufficient to cause a divergence. This could be either as a direct pointer
argument, or as a struct or buffer containing a pointer value. For writev for example, it
includes all the pointers and their buffers in the iovec structs as well. The case where
pointers are passed indirectly as part of buffer contents is revisited later in this chapter,
when discussing the conversion of pointers to other types in general.

An example of an operation that is guaranteed to be safe is a dereference expression. It
is interpreted as every expression whose evaluation translates to a memory access. This
includes the star operator (*), the arrow operator (->) and the array indexing operator

5Other addresses, obtained by for example using a pointer without initializing it, are not considered
as cause for ASB since they represent bugs in the program.

6Note that even though all memory addresses are of pointer type upon introduction, that does not mean
that all values that are of pointer type in the program necessarily contain memory addresses. However,
for analyzing the causes of ASB, this has no influence.

7Even though the address-of operator might be applied to the pointer value directly when the logical
allocation only contains the pointer value, that case is a direct concretization of the more general “pointer
in logical allocation” case. Hence, it is not considered separately.
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([]). The operation is technically address-sensitive since the memory it accesses directly
depends on the address value used to refer to it. However, the only divergences that could
occur from it are when the equivalent logical allocations do not contain the same contents
in the variants or the used pointers do not point to the same logical allocations. None
of these divergences are caused by this operation; they are all the result of either prior
divergences or bugs in the program. Any subsequent divergence is attributed to them in-
stead. Therefore, from an ASB perspective, the dereference expression can not introduce
any benign divergences, so it must always be safe ASB. Note that a dereference expression
is sometimes required or used to facilitate ASB in indirect ways, such as in conversions
from pointers to other types (see later), but even there the result of this operation should
be logically equivalent across variants. The source of ASB is then contributed to some
other operation that appeared in the process instead.

Another series of operations are the arithmetic and comparison operations. They are
well-defined as long as all pointers involved, including potential resulting pointers, refer to
somewhere inside or one past the end of the same array object [21, Section 6.5.6.8]. When
used within their well-defined form, these operations can never introduce ASB directly.
A similar argument as for the dereference expression applies: if this operation does not
involve memory addresses that refer to the same logical allocation in all variants, a prior
divergence is blamed instead. However, contrary to the dereference expressions, when
these operations are used outside of their well-defined behaviour using pointer values that
refer to different logical allocations, they can be unsafe. A typical example of this is the
use of relative pointers, of which an example was given in the overview at the beginning
of this chapter. In itself, none of these operations necessarily influence the program to
execute different system call sequences. However, since the results of these operations
are of integral type (barring the addition of integral types to pointers), they increase the
scope of potentially address-dependent values to integral types and all operations on them.
The implications of this are considered in more detail later, when discussing the conver-
sion of pointer values to integral types in its generality. Note that C++17 specifies the
std::less-family [31, Section 23.14.7] of class templates, providing an implementation-
defined specialization with a strict total order for pointer types. On a flat memory model,
this is typically equivalent to comparing the numerical address values. In C, this is ex-
plicitly undefined behaviour, but typically yields the same effects.

Lastly, the single most common operation with which unsafe address-sensitivity can be
introduced is by converting a pointer to some other type. Whenever that happens, those
values become variant-specific as well and the scope of operations on variant-specific values
increases. Although pointers can theoretically be converted to any type (not necessarily
in a well-defined manner), a common conversion is to integer types. LLVM Intermediate
Representation (IR) even has dedicated instructions to facilitate this in a cross-platform
manner [41]. The problem with converting pointers to integers in the context of ASB is
the broad use of integers for non-pointer-related purposes and the variety of arithmetic
and other operations defined on them. Any ASB introduction analysis that allows these
conversions to remain undetected must as such suddenly deal with a greatly expanded
set of potential values in a program that may be tainted by address values, and a lot of
them not even remotely having anything to do with the issue. However, detecting pointer
to integer conversions is not as trivial as it seems due to the variety of ways in which it
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can happen. Given that arbitrary arithmetic is defined on an integer, and integers can be
compared to pointer values for equality, any search algorithm can be employed to search
the space of integer values and find one that compares equal to the pointer value. This
suggests that the real scope of possibilities for expressing pointer to integer conversions is
theoretically infinite. Listing 3.4 gives an illustrative example.

char* some_ptr = "";
size_t intptr = 0;
while (((char*)intptr) < some_ptr)

intptr++;

Listing 3.4: An esoteric way of converting a
pointer to an integer.

This is an example of a linear search algorithm through integer space, incrementally trying
different integer values until one is found that compares equal to some pointer value.
Although this will definitely compile and give the correct result for common language
implementations on flat-memory architectures, it is rather contrived. In a real world code
base, one of five techniques is typically employed. An overview of these is given here.

1. Casting. The most straightforward way to convert pointers to integers is through the
use of type-casting. Although not the same as a cast, implicit contextual conversions
to integers such as for example assigning a pointer to an integer are included in this
category as well. This is generally implementation-defined behaviour in C11 [21,
Section 6.3.2.3] and C++17 [31, Section 6.7.4.3], except for those integer types that
are specifically designed to be large enough to hold pointer values on every platform
(intptr_t and uintptr_t) [21, Section 7.20.1.4]. Even then, there exists no
portable guarantee for the actual contents of that integer after such a conversion,
apart from ensuring that if the integer is converted back to the same pointer type
without any operation applied on it, the resulting pointer value will not differ from
its initial value. Nevertheless, casting pointers to integers and back is a common
practice [42] and on a flat memory model most implementations guarantee that the
integer representation is bit-wise equal to its pointer counterpart [41]. This is relied
upon for example when checking for alignment as discussed in the beginning of this
chapter.

2. Using pointer arithmetic. As previously discussed, the subtraction of two pointer
values is only well-defined if both point into the same array object [31, Section 8.7.5]
[21, Section 6.5.6.8]. However, the result will typically simply be the difference of
their numerical address values. Therefore, the result of subtracting the NULL pointer
from another pointer is equivalent to the integer representation of that other value.
Similarly, an integer can be converted back to a pointer by adding it to the NULL
pointer. In Gnulib’s obstacks implementation [43], the __PTR_ALIGN macro uses
this trick.

3. By reinterpreting a pointer to the memory this pointer resides in. The address of any
logical allocation can be taken with the & operator, cast to a pointer to any type and
subsequently dereferenced. This violates the strict aliasing rule in C11 [21, Section
6.5.7] and C++17 [31, Section 6.10.8] but just reinterprets the memory content in
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most language implementations. In fact, when a pointer is being reinterpreted to an
integer in this way, Clang will generate the same IR for simple cases. This can be
done both via dereference + assignment and via memcpy.
The example about passing a pointer to a structure that contains a pointer as one
of its fields to the write system call is also a use case of this: the address of the
allocation in which the pointer resides is taken, cast to a pointer to some other type,
typically char, and the pointer is reinterpreted as an array of chars together with
the other fields. This yields an array that contains address-dependent data which,
without context, is indistinguishable from a regular array that is the same across
variants.

4. Through a union. A union is a data structure whose members all occupy the same
space in memory [21, Section 6.2.5.20]. Therefore, when a union contains both an
integer and a pointer and the pointer member is active, any read from the integer
will typically result in an integer representation of the address value:

If the member used to read the contents of a union object is not the same
as the member last used to store a value in the object, the appropriate
part of the object representation of the value is reinterpreted as an object
representation in the new type as described in 6.2.6 (a process sometimes
called “type punning”). This might be a trap representation.

[21, Section 6.5.2.3.3]. Conversely, in C++17 this same operation is undefined be-
haviour [31, Section 12.3], but behaves no differently in practice than C11.

5. Using variadic arguments. As discussed in the example where a pointer is converted
to a string, passing a pointer to a function that takes a variadic argument list removes
all type-safety and the types of the variadic arguments must be reconstructed inside
the function through external means. The most common case is the printf-family
of functions, where a format string is used to reconstruct the argument types.
Hence, by using va_arg with integer type on an argument that originally had a
pointer type, a conversion can be achieved, and vice versa.

Categorization of ASB based on type of address-dependence

By simply defining any monitoring granularity, it may be guaranteed that ASB is already
introduced in the program. In the case of system call granularity, most system calls
cannot be meaningfully executed introducing ASB simply because they take pointer values
as arguments. There is no way to not have ASB in this case, as it happens to be API-
specified that address-dependent values must exist among the regions of program state that
are inspected by the monitor to determine equivalence. The pointers are just being passed
as arguments to a function though, in essence not dissimilar from any other function8

except that other function calls are not explicitly monitored.

Concretely, this applies to pointer arguments to system calls, both as direct arguments
and as API-defined members of struct arguments. Calling any system call with these
types of arguments is categorized as weak ASB because it shows the weakest dependence

8Disregarding the differences between system calls and ordinary function calls, which are not relevant
for this rationale.



3 Address-sensitive behaviour 23

on the numerical value of the pointer: it is simply used to refer to some logical alloca-
tion. Its value is otherwise never specially inspected by the program. Weak ASB can only
occur directly at the system call invocation by definition. As discussed in the pointer-as-
argument example at the beginning of this chapter, current MVEEs that use Salamat’s
formalization of system call equivalence are insensitive to this, as they do not consider the
pointer values themselves to determine equivalence, but the memory contents they refer to.

Note that pointer values contained in a buffer unknown to the system call are not con-
sidered weak ASB. This is because the system call API does not specify that that buffer
contains a pointer value at all, so it is the use of the system call that is memory-layout
dependent, not its very definition. Although this difference in use seemingly also exists
for explicit pointer arguments that may have the NULL value which, if consistent across
variants, makes the system call non-address-sensitive, this is a documented API feature
that is explicitly supported by the system call and will correspond to different functional-
ity, e.g. NULL as first argument to mmap. This is not the case for buffer arguments: the
pointer values potentially contained within them are completely unknown to the system
call and it will not provide different functionality based on their existence.

Figure 3.3: Relationship between strong/weak ASB and operations that cause divergences

Conversely, some divergences seem to signify a more profound address-dependence than
weak ASB and use the pointer for its numerical address value rather than to merely refer
to some logical allocation as a function argument. In the examples at the beginning of
Chapter 3, the iteration over a hash map causes completely different system calls to be
executed in the variants, or the same system calls to have non-equivalent pointer and non-
pointers arguments. This is because the iteration happens in a different order in all the
variants, fundamentally due to the address-dependent insertion method. This operation
solely uses the pointer for the numerical value it holds and does not consider the logical
allocation that the address represents. We call this a strong dependence of the program
on the specific address that a pointer variable holds. It shows itself in divergences by
influencing non-pointer arguments and buffer contents and changes the logical allocations
both explicit and implicit pointer arguments refer to. Pointers that are implicitly passed
as buffer contents are also included in this because their presence in a buffer hides their
pointer nature, influencing program state beyond pointer values alone which can never
happen in weak ASB.
Current MVEEs can only recognize and support some pre-defined diverging system call
patterns caused by strong ASB, such as those in ptmalloc [2]: the program depends on
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some numerical property of the address value, namely that it is divisible by 1MB.

Note that weak address-sensitivity is a subsidiary effect, with strong address dependence
taking precedence in case both are present. For example, if the monitor detects that a
system call operates on different logical allocations in the variants9 it is not considered
weak ASB, even though the system call takes pointer arguments, which is the definition
of weak ASB. The strong ASB that led to this non-equivalent pointer argument takes
precedence in the categorization of this divergence.

Since weak ASB never leads to divergences under Salamat’s formalization of system call
equivalence, it is guaranteed safe ASB. For strong ASB, such guarantees do not exist; as
discussed previously, it cannot be determined from the use of, for example, a hash table
whether this will lead to a divergence or not. The relation between ASB and divergences
from Figure 3.2 is further extended using this insight in Figure 3.3.
Additionally, the differences between strong and weak ASB are summarized in Table 3.1.

Weak address dependence Strong address dependence

Pointer values are used for their access to
a logical allocation

Pointer values are used for their specific
memory address value

Introduced only at system call invocations Introduced anywhere in the program

The different values are all of pointer type The diverging values can be of any type
(including pointer type)

Never causes a divergence, safe by defini-
tion

Does not necessarily introduce divergences

Mitigated by current MVEEs Not supported10 by current MVEEs

Table 3.1: Overview of differences between strong and weak ASB.

Within strong ASB, the details of its dependence on address values can still further be
qualified. In the rest of this section, a further categorization is presented that analyzes
this dependence based on how functionally resilient the program is to removing it.

In the hash map example, the index computed from a pointer value is merely used to
determine a bucket to place the pointer in, and subsequently disappears from the pro-
gram. At no point is it used to reconstruct the original pointer value. This means that as
soon as an address value is not a dereferenceable entity in the program anymore, it can
technically have any value at all as long as the same hash value is always returned for the
same pointer operand. Hence, all pointers could hash to the same value without compro-
mising the functionality of the hash table11. The combination of assumptions that the

9Assuming the divergence is caused by ASB.
10Barring hard-coded exceptions such as ptmalloc in GHUMVEE [2].
11The performance of the hash table will suffer greatly if all pointers hash to the same value, because

of the amount of collisions. Performance effects or time-complexity guarantees about the program are not
considered part of its functionality though. Nonetheless, an alternative hash operation that preserves these
guarantees but still proves that there need not be any numerical dependence on the pointer value would
be to generate and cache a random number for every pointer insertion. The same random number would
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program makes about the numerical value of a pointer based on a non-address value that
was derived from it (index) is referred to as the feedback of the derived value on the pointer
value. Hence, in the hash table case, this feedback is non-existent, since the index is only
used to determine the position of the pointer in the table, and makes no assumptions
about any value for the pointer itself. It is a strictly one-directional operation. If a case of
strong ASB incurs no feedback, it is called non-reversed strong ASB: the program does not
depend on any numerical relation between the hashed/index value and the pointer value;
there is no later decoding of the derived value that is supposed to satisfy some assumption.

This is not always the case though: in the relative pointers example from Listing 3.1,
the derived value is the difference between two pointers which is later added back to one
of the pointers to reconstruct the other pointer. This implies maximum feedback from
the derived value back to the reconstructed pointer value: the program assumes that the
sum of the derived value and the pointer value exactly matches the value of the other
pointer. In fact, there exists only one value for the derived value that will not violate the
program’s assumptions, which is the actual variant-specific difference between the pointer
values. This is the complete opposite scenario of the hash table case, where no derived
value could be constructed that would compromise the program’s functionality, as the
program made no assumptions that could be violated in the first place.

Both of these cases represent the extremes between which feedback can exist from derived
values to pointer values. In other cases, it can be more nuanced. Consider the memory
alignment case: the derived value is essentially some number qualifying whether or not
this pointer is aligned to a certain boundary. This could be an integer containing the
difference to a neighbouring multiple of that boundary, or a simple boolean. A typical use
case is to then use that derived value to modify the pointer value again until it is aligned,
and then do something with the memory it refers to. The strlen example from Listing
3.3 shows this very well: the pointer is incremented only if the derived value indicates that
the pointer value is not aligned (feedback), and the memory is accessed on every iteration.

In this specific case the alignment on char_ptr is performed because some vector instruc-
tions used for processing 8 bytes of the string at once require that the memory on which
they operate is suitably aligned [44] to an 8-byte boundary. To evaluate the influence that
the result of the alignment check, i.e., the address-sensitive operation, has on the correct-
ness of the program, consider the situation where we provide a bogus result, chosen by us,
for the alignment check ourselves. By examining the effect that has on the program, we can
quantify the amount of feedback that exists from the alignment check to the pointer value.

First of all, whenever the bogus alignment check says the pointer is aligned to an 8-byte
boundary while it is not, we violate the programs assumption later on that the instructions
that require this alignment do not crash. And if the vector instructions in this routine were
implemented using inline assembly or compiler intrinsics, a crash would definitely occur.
However, likely for portability of this code between systems with different word sizes12

be returned if the same pointer was hashed again.
12The snippet in Listing 3.3 was modified to assume 64-bit for simplicity, the original also supports

32-bit.
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and CPU capabilities, this is not the case, i.e. no inline assembly or intrinsic functions are
used. The char array is interpreted as an array of aligned 64-bit integers instead, which
are checked for zero-bytes as a whole, i.e. 8 bytes at a time, using a clever magic number
trick13. The idea is here to provide a Single Instruction Multiple Data (SIMD) algorithm
that the compiler’s optimizer can easily vectorize if the target platform supports it. If the
compiler cannot prove that char_ptr will be aligned to 8 bytes after the loop, it will
use unaligned vector instructions, or none at all. Hence, if a bogus value is provided at
compile time, the compiler will not trust that char_ptr is suitably aligned anymore and
the unaligned char_ptr will not cause any issues.

Except, this is not the only reason why char_ptr needs to be aligned. As the string is
now checked 8 bytes at a time but the zero-terminating byte is not necessarily in the last
byte of those 8 bytes, the last check could read at most 7 bytes past the end of the string.
This will not cause a segmentation fault as long as all of those 7 bytes are still contained
within a mapped page. This is only guaranteed when every 8-byte access in the string
is aligned on an 8-byte boundary14. Since the string is iterated 8-bytes at a time, this
constrains char_ptr to be aligned to 8-bytes at the beginning of the iteration, i.e. after
the initial alignment loop. Hence, in case of the the bogus alignment check, there exists a
chance that the last 8-byte access will fault depending on the length and location of the
string, crashing the program.

However, the above consequences are not guaranteed to happen for every possible combi-
nation of bogus values. If the bogus value over-states the actual alignment of char_ptr,
the above scenario unfolds. However, if the bogus value consistently denies that char_ptr
is suitably aligned, the initial alignment loop will never be exited and the strlen will be
calculated using a byte-granular search, without error. In fact, as long as the bogus value
is never true when the string is not actually aligned, the strlen will work.
This places the amount of feedback from the alignment result back to the pointer value
somewhere between the hash table and the relative pointers: if the pointer is aligned, the
bogus value could be anything but if the pointer is not aligned, the bogus value must not
over-state its alignment.

This analysis shows how the amount of feedback of an address-sensitive operation is highly
context-dependent and not necessarily all-or-nothing as in the first two examples. If there
exists any feedback at all, this is called reversed strong ASB.

Note that the qualification of feedback and whether or not some ASB is reversed depends
on the specific granularity at which pointer operations are observed. In the relative point-
ers example from Listing 3.1 the sort operation is hidden behind a library call, naturally
causing an observer to focus on the effects of changing the values that are stored in the
collection of relative pointers, and evaluating their feedback on the reconstructed pointer
values. However, if the relative pointers were stored in their variant-specific form and the
sort operation was investigated in detail, a similar situation to the hash table appears:

13The actual logic behind how a single zero byte can be detected using vector instructions is out of
scope for this work.

14And the page size must be a multiple of 8.
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the relative pointer could be swapped out for a bogus value right when it is compared
to another value or involved in some other operation that determines its position in the
collection. If this is consistently enforced throughout the program, it would be transparent
to the programmer that the relative pointers are not in fact stored in numerical order.
Hence, there would be no feedback to the rest of the program.

It is unclear whether reversed strong ASB can always be reduced to a case of non-reversed
strong ASB at a finer granularity in this way. Even in this simple case, it is not straight-
forward to detect at which granularity the bogus value should be provided, and to foresee
which additional precautions should be taken to ensure that the programmer’s expecta-
tion of the numerical order of the elements in rel_ptrs is preserved. Technically, the
non-reversed qualification of ASB in the hash table case is only based on the assumption
that the hash operation is opaque to the programmer in the first place. If the numerical
pointer value is simply considered its own hash value and the programmer is aware of this,
the program might make similar assumptions to the relative pointers case about the order
of the pointer values in the hash table. Likewise, the seemingly non-reversed pointer value
output of printf to stdout could technically also be read again, potentially by a human
observer, and parsed back into a pointer value. This strongly suggest that all ASB can be
made into reversed ASB, but not all reversed ASB can be reliably made into non-reversed
ASB. The terms feedback and reversed ASB are still useful though to describe the influence
that a value change of a derived pointer value has on the functionality of the program.

Categorization of ASB based on control flow effect

Sometimes, an instance of ASB taints the control flow of a program. This means that at
one point, something causes at least one variant follow a different control-flow path. A
necessary prerequisite for this is the diverging evaluation of a certain condition, which,
in case this divergence is caused by ASB, must somehow have been tainted by an ad-
dress value. Note that such a tainted conditional evaluation is not necessarily a sufficient
prerequisite for a divergence, as illustrated by the strlen snippet in Listing 3.3. This
control-flow altering ASB clearly requires strong ASB, as a pointer has to be interpreted
for its numerical value to taint the evaluation of a condition. Additionally, weak ASB only
occurs at system call boundaries, which are not conditional branches. Therefore, weak
ASB can never lead to control-flow altering ASB, but strong ASB can exist outside of
control-flow altering ASB. This is demonstrated by a rather contrived O(n) implementa-
tion of the sort operation in the relative pointers example from Listing 3.1, demonstrated
in Listing 3.515.

15This implementation technically contains a memory error where, if data does not contain
UINT32_MAX, there will be written one-past the end of the array. One could say it is an API requirement
that data should have an extra element allocated, but to prove that the memory error is not inherent
to the claim that strong ASB does not necessarily alter control flow, an error-free version is attached in
Appendix A. We did not include it here to avoid obscuring the point of the snippet.
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void sort(uint32_t* data, size_t len) {
static std::vector<bool> cnts(UINT32_MAX);
std::fill(cnts.begin(), cnts.end(), false);
for (size_t i = 0; i < len; i++)

cnts[data[i]] = true;
for (size_t i = 0, j = 0; i < cnts.size(); i++) {

data[j] = i;
j += cnts[i];

}
}

Listing 3.5: A counting sort for 32-bit numbers with data-independent
control flow

This specific implementation assumes that data has distinct elements, which is realistic
for the use case of relative pointers. The only conditional evaluations are of len and
cnts.size(), both of which are variant-agnostic. Its time-complexity is linear, but a
big constant term caused by the second loop limits its usefulness in practice.
A less contrived example would be a call to printf with a pointer argument, which will
also not cause diverging control flow in the variants although it is strong ASB.
Note that the notion of control flow is interpreted broadly here, not only referring to
conditional jump instructions that might send variants down different branches but also
including conditional move instructions [45, p.50] as they are expressed similarly in C/C++
source code, which is the target of this work.

3.5 Visual representation

Finally, to conclude the categorization of ASB and this chapter, all of the introduced
terminology and concepts are related visually in Figure 3.4.
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Figure 3.4: Flow of diversified address data through a program from an ASB perspective.

The term non-diverging, equivalent pointer value is introduced to disambiguate between
pointer values that refer to different logical bytes in the variants, and pointers that do not.
If the same logical pointer variable refers to the same logical allocation in all variants, this
is a non-diverging pointer value that is equivalent in the variants. Every address value
starts out as such. If it refers to a different logical allocation in some variants, or a different
offset into the same logical allocation, we call it a diverging pointer value, to highlight how
it is a first step towards an eventual divergence, since subsequent memory accesses through
that pointer variable will have different effects in the variants.
The arrows between the various states in Figure 3.4 are explained below:

1. This occurs when a non-diverging, non-escaped pointer value simply disappears from
the program by leaving the scope.

2. A derived value is the difference between two pointers for example. By reconstructing
an absolute pointer from it, a non-diverging pointer value is obtained.

3. A derived value is passed to a system call. The most notable example of this is the
pointer-in-buffer or pointer-in-string case, where a pointer value is transformed into
a derived value, i.e. char buffer or string representation, before being passed into a
system call.

4. Similarly to 1, a derived value can simply disappear from the program if nothing
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references it any longer.

5. A derived value can be converted into another derived value. For example, a rela-
tive pointer undergoes pointer arithmetic. After reconstruction, it will be as if the
arithmetic was applied on the absolute pointer instead.

6. If the derived value is the distance of a pointer to a next alignment boundary, such
as in the ptmalloc example from Figure 3.1, it can be added to a non-diverging
pointer value to produce a logically diverging pointer value that is aligned to that
boundary in all variants. Alternatively, the result of an alignment check could be
different in the variants, leading to different control flow.

7. A diverging pointer value can produce a derived value similarly to a non-diverging
pointer value. This could be a relative pointer, alignment result, etc.

8. An alignment check on a diverging pointer value will lead to non-equivalent control
flow.

9. Similar to 8.

10. Similar to 4 and 1. A program might go into a logically non-equivalent state with-
out ever resulting in a noticeable divergence from the monitor’s perspective. For
example, a list of pointers could be sorted in ascending order without ever accessing
them. Or the example from Listing 3.2, where the hash table of pointers is iterated
over in variant-specific order but, because the allocation contents are the same, no
divergence is observed by the monitor.

11. A diverging pointer value or piece of non-equivalent derived data is passed to a
system call, or non-equivalent control flow in the variants leads to a divergence.
Iteration over a hash table is an example of this.



Chapter 4

Overview of mitigation approaches

In general, there can be two perspectives to the problem of eliminating the benign diver-
gences caused by ASB: determining whether a divergence is a false-positive from within
the monitor, or preventing false-positive divergences in the first place.
From a monitor perspective, it is hard to determine whether a diverging system call is
benign or not. The only possibility would be trace back the specific diverging system
call arguments to the root of their divergence and comparing their provenance. This is
only possible if dynamic taint analysis is used to track all pointer values during execution
of every variant in the MVEE. Additionally, it should be provable for the monitor that
diverging values are only tainted by false-positive sources of non-determinism like pointer
values. This would also require tracking all untrusted program input, which, even disre-
garding its performance overhead and false positive/negative rate, would be an entirely
different security scheme to the one an MVEE offers. Therefore, this angle is not further
entertained as a mitigation approach.
At the point where arguments to system calls diverge, this work considers any divergence to
be indistinguishable from a malicious divergence in the general case. Hence, the challenge
shifts towards preventing false-positive divergences in the first place, without preventing
true-positive ones at the same time. In fact, the following metrics are considered when
evaluating an approach, loosely in decreasing order of priority:

1. Completeness. As a first all-round look into ASB, the provided solution should be
able to cover as much real-life ASB as possible.

2. Soundness. The solution should not hide any true positive divergences and it
should introduce little to no new false-positives or bugs into the variants. This is
especially relevant in the context of undefined behaviour: a strict interpretation of
the language standard would allow the mitigation solution to behave arbitrarily but
ideally, the de facto behaviour that the programmer expects should be preserved.
On the other hand, as long as the program’s functionality or security is not altered,
there is no inherent problem with a lack of soundness.

3. Manual developer effort required. From an MVEE perspective, the more effort
has to be put into manually preparing code before it can run in the MVEE, the
smaller chance of adoption the system has. Secondly, the less manual effort required
for a solution, the more insight into the ASB problem it demonstrates, indicating a
more interesting angle to pursue in future work.

31
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4. Flexibility. An ideal solution is agnostic to the granularity of the applied memory
layout diversification. In practice, this means supporting the randomization of the
base address of every logical allocation.

5. Security. This work considers ASB mitigation in the context of MVEEs, so any
covert channels [2] the solution opens across variants that reverse/neutralize the
applied diversification are undesirable.

6. Run-time and memory overhead. Modern MVEEs can be very efficient, de-
pending on the supported parallelism of the underlying hardware and the system
call intensity of the target program [1]. Any degradation of this metric decreases
the likelihood of adoption, but since this work presents an initial step towards ASB
mitigation this is not the main focus.

Note that there exists some overlap between the metrics presented here: a lack of sound-
ness may for example increase performance overhead, decrease security and introduce bugs
into the program. These three specifically are referred to as secondary metrics below.

As discussed in the previous chapter and contrary to ASB caused by address values,
mitigating ASB caused by uninitialized data does not have to consider the intention of
the MLD at all. Therefore, it is covered separately, after which the bigger problem of
mitigating address-sensitivity caused by the use of pointer values is considered. All of the
work here assumes that full source code for the entire program is available, including all
dependencies.

4.1 Mitigating ASB caused by the use of uninitialized data

The analysis provided Chapter 3 argues that there is no harm in considering all uses
of uninitialized data to be ASB and, therefore, considering its very introduction into a
program to be ASB. The straightforward way of mitigation would then be to make sure
all uninitialized data has the same value across variants, e.g. zero [46]. However, this
solution over-extends its purpose: the value of uninitialized data should merely be the
same in the variants, not necessarily have a predictable value. Some uses of uninitialized
data are not accidental, but intended as a low-entropy source of randomness, such as in
the OpenSSL example given in Chapter 3. Since this is not considered a secure or even
reliable source of randomness and already actively discouraged [47], it is reasonable to
assume it is either combined with other sources of randomness to produce the eventual
result, as in the OpenSSL example, or not used at all.

Another example is the __gen_tempname function from glibc in tempname.c, where a
value is used without initialization as part of the process to generate a random filename.
The case where the value is 0 is explicitly considered as an edge case though, upon which
it is initialized with a random value.
Both of these examples seem to suggest that real-world programs do not functionally
depend on reading a different value from uninitialized memory, and account for its inherent
unreliability. Zeroing out uninitialized data thus seems like a realistic solution, and there
is no need to over-complicate a mitigation solution by attempting to provide a random
value to initialize the data with.
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This solves all the uninitialized data examples given in the overview at the beginning of
Chapter 3; if all sources of uninitialized data covered in Section 3.3 are zeroed after alloca-
tion they can never cause benign divergences. The implementation of this instrumentation
is covered in Chapter 5.

4.2 Mitigating ASB caused by the use of pointer values

As highlighted by its categorization, ASB caused by pointer values is introduced at some
point in the program and may not have an effect until an arbitrarily distant and generally
unpredictable future point. Additionally, a source of ASB such as an alignment check
can not only lead to a single divergence down the line. Wildly different code may be
executed when the control flow of two variants is allowed to differ, potentially causing
different modifications to program state to cause a multitude of divergences down the
line. Volckaert has previously referred to this as a ripple effect in the variants [2]. For
these reasons, an ideal solution focuses on detecting the earliest point at which ASB is
introduced and makes sure its effect across variants is the same there, before it can cascade
and multiply into other parts of the program state, where it becomes uncontrollable [2].

High-level strategy

The easiest and least invasive way to mitigate an address-sensitive operation is by pro-
viding the same input to it in all variants. This entails the design of a mapping from
variant-specific values to variant-agnostic or unified values, that is used to instrument the
input to address-sensitive operations.
Secondly, some address-sensitive operations must be selected to be instrumented. Perhaps
the most obvious solution would be to use taint-tracking to find out which operations
are unsafe. However the taint tracking necessary for this kind of analysis is of the most
complex kind. Both explicit and implicit flow [48] need to be captured, e.g. during an
alignment check, both the explicit flow from the pointer value to the boolean indicating
its alignment status must be covered, as well as the implicit flow resulting from both
branches of the check. The analysis additionally needs to be inter-procedural [49] and
needs to completely and soundly resolve all alias analysis [50, 51] to be useful in practical
applications. Consider the common case of ASB; the hash table case: the point where
pointers are stored in the table is arbitrarily far from the point where iteration takes place.
The crucial information that makes the iteration address-sensitive is in the insertion pro-
cedure though, meaning that an analysis would need to carry the information that the
order in which the pointers are stored is address sensitive throughout the whole program.
This set of requirements can not be met by any static analysis tool due to its inherent
undecidability [52].

For the problem of mitigating ASB however, a sound analysis is not necessarily required:
as long as all ASB is mitigated, it is sufficient that the additional mitigation performed
does not lead to bugs. The issue of instrumenting the target program without breaking
it thus persists whether a static analysis tool or a ball-park over-estimating assumption
about which operations are unsafe is used. This work will opt for the latter, whose sound-
ness can optionally be enhanced by static analysis techniques, without relying on their
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precision for completeness.

4.2.1 Choosing an over-estimation of address-sensitive operations

As previously discussed, any automatic instrumentation of specific pointer operations must
deal with the side-effects it may have given that the program still considers the unified
value to be derived from a valid pointer value. What those side-effects are depends on
which operations are instrumented. The selection of operations that are considered unsafe
and the subsequent instrumentation effectively introduce an ASB boundary into the pro-
gram between the variant-specific form of memory addresses and their unified form. After
that boundary is crossed, ASB can no longer occur. This section evaluates the various
considerations that go into drawing that boundary, and its effects on program correctness,
security, performance and ASB coverage. The existence of a unified address space is as-
sumed for the discussion below, to and from which variant-specific addresses can be freely
translated.

Pointer-granular detection: every use of a pointer value is unsafe

Given that Chapter 3 suggested that there are many ways, including esoteric ones, to
convert a pointer value to an integer, the only ASB boundary that is guaranteed to be
complete considers the very introduction of pointer values into the program to be ASB.
All sources of pointer values in a program, listed in section 3.4, can be wrapped to provide
the same unified value in all variants for each logical allocation. This trivially eliminates
all ASB from the program, because all pointers will have the same value in all variants.
However, these unified addresses will not necessarily be valid memory addresses and any
use of them to read from or write to the memory they are supposed to reference will
be invalid in all variants1. Hence, on every memory access that unified address must
be specially translated back, i.e. deunified, into the variant-specific address that was
originally obtained for that logical allocation. This detection strategy is said to have
pointer granularity, as it considers every use of a pointer unsafe.
There are a few downsides to this approach:

1. Run-time overhead: load/store operations are the most commonly executed instruc-
tions [53]. Apart from non-array stack variables whose address is never taken, every
operation on memory will have to be wrapped with a deunification operation, slowing
down the program considerably.

2. Security: because pointers are now always the same in the variants, some memory
error exploitations that the MVEE is designed to catch might start to show simi-
lar effects in all of them, limiting the MVEE’s ability to catch their exploitation.
Out-of-bounds reads or writes using pointer arithmetic and subsequent dereference
expressions are supposed to access completely different logical memory locations in
the variants, hindering their exploitation. However, since the memory layout of
the unified address space is the same across all variants, these invalid accesses may

1Note that this is only a problem from a program correctness perspective. The fact that a unified
value could be a valid memory address in all variants does not decrease security as the memory layout is
diversified, so the access will have different consequences in all variants.
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actually access the same logical allocations when this mitigation is applied. Conse-
quently, they will have the same effects in the variants, counteracting the intended
effect of MLD and essentially hiding a true positive divergence.

3. Introduction of bugs: in the strlen example from Listing 3.3, this mitigation
strategy could cause both bugs discussed in Section 3.4, as the alignment check
might return bogus values relative to the actual alignment of the deunified value,
depending on how the bogus values are chosen.

Note that this approach is not necessarily equivalent to disabling all MLD in the first place
and just forcing all logical allocations to the same positions in all variants. Consider the
classic stack smashing attack, where the return value of a function frame is overwritten
such that on a ret instruction, the program jumps to some attacker-controlled position in
the code [54]. The memory access that a ret instruction incurs is never explicitly written
in source code. The load/store instrumentation thus never has to be applied to it and its
value will always have to be variant-specific. Without any MLD, this is still exploitable
but in an MVEE with full MLD including DCL this approach does not decrease security
in this specific case.

Operation-granular detection: specific uses of pointer values are unsafe

A distinction was made in Section 3.4 between safe and unsafe ASB. Therefore, the analysis
could be refined by only considering unsafe operations, rather than all of them. In this
new approach with operation granularity, pointer values are allowed to exist in a variant-
specific way until they are used in one of these operations and replaced by their unified
value. Since the dereference expression is not one of such unsafe operations, the load/store
overhead is avoided. In the other cases, the following instrumentation rules are applied:

1. For pointer comparisons: the comparison is done on their unified value instead. For
equality comparisons and comparisons within the same logical allocation, this is this
equivalent to the non-instrumented version.

2. For pointer subtractions: the difference between their unified values is returned
instead. This will always have the same sign as the programmer expects due to rule
1. For pointer subtractions within the same logical allocation, this is equivalent to
the non-instrumented version.

3. For integers added to pointers: the integer is added to the unified pointer value
instead, then the deunified value of the result is returned. If the result does not
exceed allocation boundaries, this is equivalent to the non-instrumented version.
If it does, it is assumed the integer was obtained using rule 2, meaning that it is
a relative pointer and its addition to the pointer value is a reconstruction of an
absolute pointer. After deunification, the result will thus always represent the same
logical allocation in all variants.

4. For conversions of pointers to integer: the unified address value is returned instead.
To avoid bugs, conversions from integers back to pointers apply a deunification
procedure.
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Since (1) the only additional operation on pointers outside of the aforementioned, namely
a dereference operation, can not be unsafe, (2) these operations lie at the basis of all unsafe
ASB and (3) the returned value of each of these operations is the same across variants, no
unsafe ASB can occur if these four rules are enforced (1, 2, 3). Although detecting rule
1 through 3 can be done reliably as they are always explicitly expressed in source code
in the same way, the broad scope of conversion possibilities between pointers and integers
suggested by Section 3.4 provides a compelling argument that rule 4 can theoretically not
be detected as precisely in the general case. This might not impede this approach as much
in practice though, if the most common ways of converting pointers to integers previously
highlighted in this work are detected.

Pointers are not only converted to integers however, but also to other types like char
arrays. The canonical divergence because of this was described in the overview of examples
at the beginning of Chapter 3, namely writing out buffers containing pointer values. As
the conversion typically does not happen directly on the pointer value, but rather on
some logical allocation that contains it, reliably detecting when this happens and unifying
the pointer value accordingly is not always straightforward. Consider the case where a
pointer to a struct is converted to a void*: this might be because it is stored in some
type-agnostic collection and cast back to the correct struct pointer before every use, or it
might be to later cast to a char* and written out using write. Simply detecting every
type conversion from pointers to pointers and pointers to structs is both complex and
performance-unfriendly: the type that is cast to may point to a struct with similar layout,
upon which no unification should be performed, and most conversions from struct* to
void* and back are just to use the struct in a type-agnostic way, what with void* being
the idiomatic type to reference any type. Applying an unnecessary unification operation
every time would be wasteful.

Outside of the divergence caused by the pointer-in-buffer case, there is limited applicability
for other imaginable unsafe uses of this conversion construct in practice. Therefore, the
assumption could be made that unsafe ASB caused by reinterpreting a pointer to be a
char array always manifests through diverging buffer contents in system call arguments.
Hence, the buffer that is passed to the system call could just be compared across variants
from within the monitor to find the diverging bytes. If it can be proven that they are
pointer values and refer to the same logical allocations, the divergence is benign and can
be ignored.

Detecting a pointer value is not as simple as finding a contiguous diverging region of 8
bytes in the buffer though. Some of the 8 bytes in a pointer value might be the same across
all variants. For example: the x86-64 architecture requires the most significant 12 bits in
a memory address to be the same as the 51st bit [45, p.14], and most implementations
extend this to the most significant 16 bits and the 47th bit. As on Linux, only the lower
128TB of address space is actually usable by user-space programs [55], the most significant
two bytes in every pointer will be the same across variants. Additionally, some of the other
6 bytes in the pointer might inadvertently match everywhere. Hence, a conservative best-
effort approach to reliably ignore benign divergences without falsely ignoring malicious
ones is presented here.

Every diverging byte is considered separately. Because the byte is diverging, it must be
part of a pointer value, otherwise this is a malicious divergence. Some 8-byte contiguous
region that contains this diverging byte must therefore be a pointer value. This defines a
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search space or window of 8 possibilities as illustrated by Figure 4.1, for which a unified
address is constructed and compared across variants. If all the variant’s unified addresses
match, the investigated 8-byte region was definitely a pointer.

Figure 4.1: All 8-byte contiguous regions that contain a specific byte inside a buffer.

Since this window is only 15 bytes wide, the assumption can be made here that no two full
pointers can exist in it next to each other as both require 8 bytes. At most one pointer
value can therefore be detected in this window. This is technically false for the following
reasons:

1. The least significant N > 0 bytes of one pointer could match the most significant N
bytes of another pointer and for some reason their matching bytes might overlap in
the buffer. Although there is no clear-cut reason for an application to do this, it can
technically be constructed. It is not unlikely that the lower bytes of a pointer value
match the upper bytes of another though: for a page aligned pointer, the lower byte
is 0 and as previously discussed, the upper byte of every user-space pointer will also
be 0 on x86-64 in Linux.

2. Without the application’s intention and especially when the address space is rather
filled up already, which is unlikely on a 64-bit architecture, some other combination
inside the window might accidentally be a valid pointer for a specific variant as well.
Chances are low though that, even with two variants, the unified values for these
accidental pointers match. This could also not be accidental, but rather intended by
an attacker as part of some kind of exploit. In that case the MVEE’s diversification
has been bypassed in some other way already since the attacker was able to figure
out equivalent pointer values in all the variants. By only allowing one pointer value
to exist in the window though, a divergence can still be raised here.

Deciding how many pointer values may maximally appear in the window is therefore a
design choice by the MVEE, balancing application support with security. Due to the
high improbability that a false positive, i.e., a non-attacker inserted second pointer value,
occurs however, this work advises to require that exactly one pointer value must be found
in the window. The buffers are additionally not said to be equivalent if, after finding all
pointers, there are still diverging bytes that do not belong to a confirmed pointer.

There exist other pitfalls to this pointer-in-buffer detection though, listed below.

1. Care should be taken to support pointer values into logical allocations that have
already been freed. Depending on the implementation of the mapping between
variant-specific and unified values, this might not be recognized anymore as a pointer
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value since it is no longer valid. Note that this does not necessarily represent a
use-after-free bug: when using write to write structures to shared mappings as a
form of Inter-Process Communication (IPC), the application might be aware of the
dangling status of the pointer it is writing. Additionally, it is not the concern of
ASB mitigation to predict use-after-free bugs in this way, but rather it is assumed
that they will lead to a detected divergence down the line.

2. The start or end of a buffer might be cutting off part of a pointer value, leading to
a diverging series of bytes that no pointer can be reconstructed from. This could be
mediated by specifying the parts of the 15-byte region that are missing as wildcards
and matching any pointer value that matches the the parts contained in the buffer, at
the cost of decreased security when larger parts of the pointer are missing. This work
therefore advises not to cover this edge case due to its assumed limited occurrence.

After applying all four rules for pointer operations and the pointer-in-buffer mitigation,
this analysis overextends its purpose since there exist for example pointer to integer con-
versions that are not unsafe, resulting in security loss and performance overhead. Consider
a canonical out of bounds access presented in Listing 4.1.

size_t size = 1000;
char* array = (char*) malloc (size);
for (unsigned i = 0; i <= size; i++) {

printf("ptr: %p \n", array + i);

*(array + i) = { /* anything */ };
}

Listing 4.1: An example of an out-of-bounds array
access.

Following the third rule, array will be converted to its unified value when calculating
the pointer into the array to print, before being deunified to return the eventual pointer
value, as shown in Listing 4.2. In case of an out-of-bounds access (i = 1000) the result
of the sum is now a unified address that points outside the logical allocation. As we will
later discuss at length, it is possible that this value does not translate back to an out-
of-bounds pointer outside the equivalent variant-specific allocation (array). If, at this
out-of-bounds address, another logical allocation is mapped in the unified address space,
the translation back will assume that this is an in-bounds pointer into that other logical
allocation instead. Since the same unified address value will translate to the same logical
allocation in all variants by definition, the resulting variant-specific pointer will point to
the same logical allocation in all variants. This makes the effect of this out-of-bounds
access similar across variants, circumventing MLD.
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size_t size = 1000;
char* array = (char*) malloc (size);
for (unsigned i = 0; i <= size; i++) {

printf("ptr: %p \n", deunify(unify(array) + i));

*((char*)deunify(unify(array) + i)) = { /* anything */ };
}

Listing 4.2: An out-of-bounds array access instrumented by considering every
operation but dereference expressions unsafe.

This seems like obvious over-mitigation by rule 3, 2 and 1, which consider every addition of
integers and pointers to be reconstructions of absolute pointers from relative pointers and
deliberately make sure the result is the same logical allocation across variants. Relative
pointers are, as discussed in their overview in Chapter 3, not well-defined behaviour and
due to reliance on the relative positions of allocations - the very thing MLD is trying to
diversify - they seem hard to support from an ASB perspective while retaining maximum
diversification. At the point where an integer is added to a pointer value, it is not straight-
forward to see whether the result is meant to point to another logical allocation, or is the
result of accidental out of bounds arithmetic.
Adapting the analysis by removing rule 1, 2 and 3 and not supporting relative pointers
does not solve the problem though: the over-mitigation can still occur through rule 4 as
evidenced by Listing 4.3, where the iteration simply happens using integers instead of
pointers.

size_t size = 1000;
std::unordered_set<uintptr_t> set;
uintptr_t array = (uintptr_t) malloc (size);
for (unsigned i = 0; i <= size; i++) {

uintptr_t array_i = array + i;
printf("ptr: %p \n", (char*)array_i);

*((char*)array_i) = { /* anything */ };
set.insert(array_i);

}

Listing 4.3: An out-of-bounds array access using integers instead
of pointers.

After instrumentation, an out-of-bounds unified address value may be deunified to the
same logical allocation in all variants, again hiding the issue from the MVEE.
Listing 4.3 also shows that this is not some simple edge case that can be detected and
accounted for. The integer representations of the pointer values (array_i) that are used
for the iteration are also inserted into a C++ STL unordered_set, using a hash table
internally [31, Section 26.2.7]. This highlights how the very same integer can cause a
security issue when mitigated and strong ASB when unmitigated at the same time. This
makes it impossible to define a boundary of only pointer operations to decide whether
some value should be unified or not: it is a specific use of the integer that is unsafe in this
case, namely its insertion into the hash table, not of the pointer itself. However, moving
the boundary to include some integer operations does not solve the problem either, as it
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is not necessarily clear in the general case which integers come from pointers, and which
should have their operations instrumented.

This strategy additionally suffers from the same bug introduction issues as the last. In
the strlen case from Listing 3.3, both bugs discussed in Section 3.4 could, again, occur
if the alignment result does not match the actual alignment of the pointer.

Lastly, an advantage of this approach compared to the previous one is that for guaranteed-
safe, bug-free programs, meaning those that never do pointer-to-int conversions and only
do arithmetic and comparisons on pointers from the same logical allocations, no instru-
mentation is performed and none of the secondary metrics are affected.

Using automatic program analysis

Both of the above strategies provide a conservative2 solution for the problem of ASB, while
having substantial security and performance issues. Automatic program analysis can serve
as a way of heuristically improving those metrics while still retaining the full ASB coverage
that the approaches offer. Note that, contrary to the use of program analysis as discussed
at the beginning of this section, there is no reliance on the analysis for the completeness of
the ASB mitigation when it is used in this way. It merely improves the secondary metrics
with limited precision.

In the case of the pointer-granular analysis, where pointer values exist in unified form by
default, the automated analysis needs to prove that a certain address value is only used
safely for a certain snippet of code. It could then delay the unification of the pointer value
until it is passed to an external routine or escapes the investigated snippet otherwise.
This allows for the instrumentation of load/store operations to be temporarily disabled
in guaranteed-safe circumstances. Within those safe zones, there will be no performance
overhead or security inhibition. The impact that this has on those metrics depends on the
precision of the analysis tool and the amount of unsafe ASB in the program.

2The operation-granular strategy does not guarantee complete ASB coverage due to the finite sup-
port for conversion possibilities between pointers and other types, but is nonetheless expected to cover a
substantial amount of ASB.
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size_t size = 1000;
std::unordered_set<uintptr_t> set;
// array not instrumented
uintptr_t array = (uintptr_t) malloc (size);
for (unsigned i = 0; i <= size; i++) {

// array_i is variant-specific
uintptr_t array_i = array + i;
printf("ptr: %p \n", (char*)unify(array_i));
// dereference is guaranteed-safe ASB

*((char*)array_i) = { /* anything */ };
set.insert(unify(array_i));

}

Listing 4.4: An out-of-bounds array access using integers instead
of pointers, instrumented by automatic program
analysis based on the pointer-granular approach.

For the operation-granular approach where pointer values are allowed to exist in their
variant-specific form until certain operations occur, the automated analysis would try to
construct similar safe zones where integer values derived from pointer values are not used
unsafely, meaning that they are simply used for operations that are considered safe on
pointer values and their conversion from a pointer value should therefore not necessarily
incur a unification operation.
Note that, in the case of Listing 4.3, the pointer-granular approach could more easily catch
this case with the use of automatic program analysis, as shown in Listing 4.4. Assuming
that this snippet represents the only use of array, it merely serves to construct array_i
in every iteration. Because the provenance of i is very clear in this case, the analysis could
rule out that array + i is a reconstructed relative pointer across allocations and the
variant-specific form of array could therefore be allowed to be returned from the malloc
call. The value of array_i is therefore variant-specific as well, and its second use con-
stitutes merely a dereference expression, which is guaranteed safe. For both other uses,
i.e. as arguments to printf and std::unordered_set::insert, no such guarantees
exist and it will therefore be unified. This is the ideal case scenario, in which both cases
of unsafe ASB are mitigated and no memory errors are hidden as the array iteration
happens with variant-specific values.
This is not possible for the operation-granular strategy as decides at the type-conversion
level whether a value should be (de)unified before conversion. Given the same information
as the previous approach, it can not treat the three uses of array_i any differently as
they come from the same pointer-to-int conversion after the malloc call. It will therefore
decide to unify during that conversion, and the iteration will happen over unified values.

The pointer-granular approach therefore seems more flexible when combined with auto-
matic analysis tools, even though without it, it performs worse on all secondary metrics
even for guaranteed-safe programs. The full scheme for augmenting the pointer-granular
approach with automated program analysis is as follows:

1. For every function in which the address of a logical allocation is used as specified in
Section 3.4, an intra-procedural analysis tool determines at which point the safety
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of the operation can no longer be guaranteed. The type of the pointer value is not
considered in this analysis, i.e. pointer-to-int conversions are treated as no-op, unless
they truncate. In general, if an operation results in a value that does not represent
a memory address, such as the lowest 4 bytes of a pointer value or a relative pointer,
the pointer value is unified before that operation. This is equivalent to considering
every operation on a derived pointer value that is not supported on an instance of
type pointer to be unsafe.
It is also considered an unsafe operation for the pointer value to escape the function
that is under analysis.

2. Following step 1, pointer values that are obtained as arguments or that are accessed
via global data are guaranteed to be unified. For those, the same analysis is applied
to investigate whether they can be temporarily deunified.

3. All functions are investigated again to eliminate redundant pairs of unify/deunify
operations. Essentially, for every function that deunifies an argument before its first
use, every unification operation for that argument at every call site of that function
can be removed. This is mostly to improve performance.

The approach presented here is a generalization of the concrete analysis performed for
Listing 4.3 earlier. However it still falls short in some cases, notably in glibc’s strlen
case from Listing 3.3: as the value obtained from the alignment check does not represent
a memory address, this analysis will unify the pointer value before the alignment check,
potentially resulting in both known bugs, if the bogus value is chosen poorly.

4.2.2 Designing the unified address space

In the above section, the existence of a unified address space was assumed to and from
which variant-specific pointer values could be freely translated. This section explores
the design of such an address space while gradually uncovering the implicit requirements
placed on it by the mitigation strategies.

Magic number

The most naive way to come up with a variant-agnostic value as input to an address-
sensitive operation is to just define a magic number up front and use that every time.
Surprisingly, this works without problem in the hash table case: since it is non-reversed
strong ASB, any value could be provided for it during the hash operation, including the
same one for every pointer. As discussed in Chapter 3, this will not compromise the
table’s functionality. Similarly, the case where pointer values are converted to a string
representation to be printed out is also trivially handled by this mapping.
The solution breaks down however whenever there exists the need for either validating
that two pointers refer to the same logical allocation in multiple variants or when there
is some kind of feedback from the unified value back to the original pointer value. For
example, in the relative pointers example from Listing 3.1, all the reconstructed abs_ptrs
will have the same value regardless of what their original value was. This could be an
invalid memory address depending on how the magic number is chosen or how the pointer
subtraction operation is handled.
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The need presents itself for a unified address space where all pointer values have different
unified values.

Count-by-use

A less naive way of mapping address-dependent values would be to provide a new unique
value for every address-sensitive operation. This could be done by simply incrementing a
counter on every instance of such an operation, returning the counter value and keeping
track of the values that were already returned in a cache, so the same unified value can
be returned for the same address-dependent value in the future again. As the variants
execute the same code, every address-sensitive operation happens in the same order and
the unified values will be consistent in the variants.
This still supports non-reversed strong ASB, but is not able to definitively validate pointer
arguments or pointers in buffers as it will return a new unified address for any pointer
value it has not unified before, bearing no validation that it refers to the same logical
allocation in all variants. If the program writes struct contents to a file containing a
pointer value, an attacker might try to overwrite the pointer value in one of the variants
with sensitive data, to leak it. The MVEE should be able to validate that this (1) is
not a pointer value and (2) is not an equivalent value to the other variants. Using this
mapping, any value will simply yield an equivalent unified value, with no guarantee that
the variant-specific values are equivalent. Therefore, the mapping should at least be able
to validate that a value is a pointer, for the pointer in buffer case.

The advantage of this approach is that any value tainted by an address can be mapped,
not just a pointer value. Although not investigated in detail as a detection strategy
due to its assumed infeasibility, the suggestion at the end of Chapter 3 that some cases
of reversed strong ASB could be reduced to non-reversed strong ASB is a use case for
this property: the relative pointers example, analyzed there, would require a mitigation
strategy to provide bogus values during the sort operation. However the relative pointers
are not valid addresses, so a mapping is required that supports any kind of value. This
mapping fulfills that requirement.

As previously discussed, generalizing this approach of finding a point during any strong
address-sensitive operation at which there is no feedback to the functionality of the pro-
gram is no small feat and deemed impossible in the general case by this work. The following
mappings will therefore not concern themselves with supporting non-pointer values, and
instead focus on fixing the issues this mapping has, notably with the unreliable verification
of pointer values.

Count-by-allocation

Similarly to how every address-sensitive operation happens in the same order in all the
variants, every logical allocation occurs in the same order as well and can thus be iden-
tified in a variant-agnostic way through their position in the occurrence order, from here
on referred to as occurrence index. If all logical allocations were to be registered, an oc-
currence list could then be kept that contains the base pointer for every logical allocation
in the order in which they were allocated. Although this is the easiest to imagine for
dynamic allocations, other sources of valid pointer values covered in Section 3.4 also fol-
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low a variant-agnostic logical allocation order - for stack allocations the order of function
frames being pushed or alloca being called, for globals an arbitrary order defined by the
implementation that instruments the code to register them. When the logical allocations
are freed via function exit or call to free, they are consequently deregistered from the
occurrence list. Note that this does not necessarily mean that the entry is removed: for
some mitigation strategies, it might be required that occurrence indices are never re-used.
The deregistration procedure is therefore mapping- and strategy-dependent.

This mapping supports translating variant-specific offset pointers into the unified address-
space, namely by finding the logical allocation whose base pointer is the closest to but still
smaller than the offset pointer. Since we assume that logical allocations can never overlap,
this is guaranteed to be the logical allocation containing the offset pointer. The unified
value for the offset pointer is then the result of adding the offset into the logical allocation
to the unified value of the base pointer. This mapping can therefore be used to validate any
pointer value, as the occurrence index of its logical allocation and its offset into that logi-
cal allocation represent a combination of two numbers that is unique to that pointer value.

However, when unified pointers undergo arithmetic such as in the example from Listing
4.3, they should definitely not be deunified to a different logical allocation in all variants
when the arithmetic performed on them is still within bounds (i < 1000). Yet this is what
happens for the occurrence list mapping: unify(x)+5 will be either a valid occurrence
index for a different logical allocation or not contained in the occurrence list at all. Either
way, the functionality of the program is compromised as the correct result, which is an
offset pointer into the original logical allocations, is not obtained.
Therefore, this mapping can be regarded as a many-to-one mapping from the Variant-
Specific Address Space (VSAS) to the Unified Address Space (UAS): every variant-specific
pointer can be mapped to a single unified address, but a unified address can be the
unification of one offset pointer for any logical allocation in the occurrence list. If there
are N entries in the occurrence list, there are N variant-specific values that produce this
unified value.

Figure 4.2: Layout of VSAS and UAS in a mapping without size information.

Translating from the variant-specific to the unified address space is O(n) since every entry
has to be investigated to find the biggest base pointer smaller than the unified pointer.
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Going in reverse is not possible due to the many-to-one nature, which is a big shortcoming
of this mapping and introduces bugs.

Count-by-allocation with full size information

If the size of the logical allocation were to be stored alongside its base pointer in the
occurrence list, the unified value for any base pointer value could be found by summing
up the sizes of all previous allocations. For offset pointers, a similar strategy to the previous
many-to-one mapping can be employed by adding the offset to the unified value of the
base pointer, but since there is now just as much space reserved in the unified address
space as there are valid offsets into the allocation, the unified values of the offset pointers
will be unique to that offset pointer. This provides a one-to-one mapping from theUAS
to the VSAS: there are as many unified addresses as there are variant-specific ones.
Note that it is transparent to the functionality whether the size of the logical allocation
is stored, or its unified value. If the former is used, the unified value can be found as
described above by traversing the list. If case the latter is stored the size can be found
by subtracting this allocation’s unified value from the next entry’s as they will be spaced
apart by its size.

Figure 4.3: Layout of VSAS and UAS in a mapping with full size information.

Because there are exactly as many unified addresses as there are variant-specific ones,
there is also no overlap between logical allocations in the unified address space. Hence, it
can be conclusively decided from a given entry in the occurrence list whether it contains
a pointer or not, eradicating the need to traverse the whole list for every unification
procedure. Regardless of whether the size or the unified address is stored, this is basically
a search into an unsorted list rendering it O(n/2) on average. For a deunification procedure
though, time-complexity gains can be achieved by storing the unified addresses directly
instead. If the size were stored, the list needs to be traversed linearly while computing
the unified values until an entry is found whose unified address range contains the value
to deunify. This is again O(n/2). However, if the unified addresses are stored in the first
place, the list is sorted by definition. Hence, a binary search algorithm could be employed
to achieve O(log(n)). The time complexity of this algorithm can therefore be improved
by storing the logical allocations variant-specific and unified address together.

The main downside of this approach is its memory overhead: it is twice that of the one
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without size information3. The next approach aims to mitigate this memory overhead
while maximally preserving the time-complexity advantages of this mapping.

Segmented count-by-allocation with aligned size information

By aligning and rounding up the size of the logical allocation4 that is being inserted into
the occurrence list to a certain predefined boundary or segment size, and then storing
an entry into the occurrence list for every segment the logical allocation occupies, the
occurrence index can be calculated similarly to the above one-to-one mapping. However,
since the segment size is constant, the size of the allocation does not need to be stored
anymore. This also provides a one-to-one mapping from the variant-specific values to
the unified addresses, but has, depending on the chosen segment size, a smaller memory
overhead as illustrated by a comparison between Figure 4.3 and Figure 4.4: although the
latter has to store more entries, they are half the size of the former, causing the total bytes
stored to be lower in this example (2*4*sizeof(void*) vs 7*sizeof(void*)).

Figure 4.4: Layout of VSAS and UAS in a segmented mapping with aligned size information.

Due to the alignment operation, the property of the previous mapping that there are as
many unified addresses as there are variant specific ones is lost; there are more unified
addresses now. They are located in the remaining part of the last segment of an allocation
and they map the difference between the aligned up size and the actual size. This means
that for a given pointer value, there might be multiple segment entries that seem to
contain it, similarly to the mapping without size information. Consider the first (green)
and fourth (purple) allocation in Figure 4.4, which sit right next to each other in the VSAS.
The entry that is stored for the green allocation is bigger than its actual size because it
is aligned up to the segment size, meaning that the following operations happen during
the unification of the purple base pointer: the occurrence list is walked, and for entry
entry, it is checked whether this entry contains the variant-specific base pointer. The first
entry that is investigated is the green entry, which claims to span a region as large as the
segment size in the variant-specific address space. If we look at the VSAS, this means it
claims that its allocation covers a small part of the purple allocation as well. We might

3Note that if upper bounds are assumed by the application for either the maximum allocation size
or the maximum memory usage, storing the size or the unified address respectively could have memory
efficiency advantages.

4Only the size that is being inserted, not the actual allocation size.
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therefore think that the pointer we are unifying is a green pointer, while it is not. To
make sure the purple unified address is returned instead, the entire occurrence list has
to be traversed again to find the entry with the highest base pointer that is smaller than
the pointer to unify. This is the only way to distinguish between all the allocations that
seemingly claim to contain a pointer value: the allocation allocation that contains it will
have the highest base pointer value of them all, as allocations in the VSAS can not overlap.
Therefore, unification is O(n) again. For deunification, the property of this mapping that
every segment is the same size can be exploited: the index in the occurrence list where
the segment containing the unified value resides can be found by integer division between
the unified value and the segment size, since the unified base pointers per segment will
always be a multiple of the segment size. If the occurrence list has random access, the
deunification can therefore be O(1).

Note that there exists a trade-off between wasted unified address space and memory over-
head when choosing the segment size. This is illustrated by the difference in UAS usage
between Figure 4.3 and 4.4. The bigger the segment size, the larger the wasted areas of
segments will be that map the difference between the aligned size and the actual size, but
the fewer segments and therefore occurrence list entries are needed to represent logical
allocations. In a 64-bit environment the unified addresses are 64-bit, making their ex-
haustion less of a concern. Additionally, since the base pointers are also 8 bytes wide, the
memory overhead to store a segment entry is twice as big as in a 32-bit environment. In
64-bit, larger segment sizes might therefore be preferred.

Care must be taken though to support logical allocations using mmap that have the unique
property that the pages they return within one mapping are contiguous, but can be indi-
vidually unmapped. Consider for example a segment size of 16KB, a page size of 4KB and
an mmap call for 3 contiguous pages, after which only the middle page is unmapped. A
naive solution would be to map every page in a separate segment such that the middle seg-
ment could be promptly deregistered, but this would violate the programmers expectation
that the pages are contiguous in the address space: there will be 12K unified addresses
between the end of the first page and the start of the second. Additionally, the difference
between the location of the third and first pages is not 4K as expected, but 16K in the
unified address space.

Alternatively, only a single segment could be allocated for the entire 12KB region, but
it is unclear how the munmap call for the middle page can then be handled. A simple
solution is to make sure that the page size is a multiple of the segment size, meaning
that every page will be fully contained in M ≥ 1 segments. Every single page can then
be trivially unmapped by deregistering all the segments it spans. This upper bounds the
segment size to the page size however, which may be too small sometimes to maximally
benefit from other optimizations. For example, to improve the unification performance of
this segmented mapping, it could be altered to additionally store the size of the logical
allocation in the segment entry. For some segments, this would be the segment size, but
for others this could store the size of the remainder of the logical allocation that could not
quite fill up the whole segment. This gains back the property for every segment to be able
to decide conclusively whether a variant-specific pointer is contained in it or not, halving
the amount of entries that need to be traversed in a unification operation on average.
To combat the memory overhead, the stored base pointers could be tagged with the size
information instead of storing a separate integer of metadata. On the x86-64 architecture
the most significant 12 bits of a pointer value are essentially unused [45, p.14], allowing
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arbitrary storage there5 without increasing the memory overhead of the segment entry.
These 12 bits exactly match the 4KB page size6. In practice however, most current x86-64
implementations do not use more than 48 bits7 of that address space, allowing a 16-bit
value to be stored inside a pointer8. Segment sizes of up to 64KB could therefore be
technically supported, further decreasing the memory overhead of the occurrence list by
storing even bigger allocations in a less entries, but the previously discussed use of mmap
restricts it to just 4KB.

Figure 4.5: Layout of an 8-byte segment entry in a mapping with segment size 16KB and mmap
support.

A superior solution is to make the segment size 16KB using 14 out of 16 most significant
bits, and then using the remaining 2 bits to count the amount of pages that have already
been unmapped from the segment. The resulting layout of the pointer value is illustrated
by Figure 4.5. As 4 pages fit into a single 16KB segment, this perfectly matches the storage
provided by the 2 remaining bits. The segment will not be deregistered until all four pages
contained in it are. None of the pages should be actually unmapped until the program has
munmap’ed them all. Rather, they should be marked PROT_NONE using mprotect [56].
Otherwise, the OS might inadvertently return the page to some variants on another mmap
call down the line, causing the same variant-specific page to exist in multiple registered
allocations at the same time. This could lead to different variants returning different
unified values for the same logical allocation, potentially resulting in unsafe ASB. If the
pages are never returned to the OS in the first place, this can never happen. Using
mprotect with PROT_NONE preserves the expected behaviour of an unmapped page by
causing a fault on every access. To prevent the page from occupying memory and counter-
acting all memory efficiency optimizations that were just presented, it could also marked
as unneeded using madvise with MADV_DONTNEED [57], allowing the OS to reclaim the
physical memory.

Note that the expected memory efficiency gains of using 16KB segments are small, as
suggested by the limited amount of dynamic allocations that are bigger than 4KB in real-
world applications [58]. One could therefore wonder if the added memory efficiency is
worth the increased implementation complexity in some cases.

In conclusion, the optimized implementation of this segmented mapping that stores how
full the segments are in the base pointer values has an amortized 8-byte overhead9 per

5As long as the most significant bits are set back to the value of the 51st bit on a deunification operation.
6We disregard the use of huge pages in this work.
7As previously discussed, user-space programs in 64-bit Linux only use the lower 128TB or address

space. Therefore, the upper 18 bits of every pointer value will actually be 0 in user-space, allowing even
greater memory efficiency. In the analysis of every mapping, only 16-bit is used though to illustrate the
concepts and keep a greater generality across different operation systems.

8As long as the most significant bits are set back to the value of the 47th bit on a deunification
operation.

9Assuming that the vast majority of logical allocations, including static ones, are smaller than 16/64KB.
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logical allocation, O(n/2) unification complexity and O(1) deunification complexity. This
outperforms the previous mapping in terms of memory and run-time overhead.

Spaced out mapping with fixed padding

All the mappings presented up until now still share the security flaw highlighted by the out-
of-bounds access in Listing 4.3, where, depending on the detection strategy, the iteration
will happen in unified space and the i = 1000 access will deunify to the same logical
allocation in all variants. To stochastically minimize the poor effect this has of potentially
hiding true positive divergences, the logical allocations could be spaced out across the
unified address space with free or unregistered regions in between. This way, it is detected
when a value deunifies to such an unregistered region, and appropriate action can be
taken. This includes either returning NULL or a different pointer value in all the variants.
Another possibility is to just terminate execution, as it has been detected that the variants
are trying to obtain a pointer value that does not refer to a valid place inside a logical
allocation. All of these would be rather premature precautions however, as the memory
needs to be accessed prior for it to be an exploitable error. In C11, as soon as a pointer
value is obtained using this arithmetic that does not point into an array object or one past
the end of the array object, it is explicitly undefined behaviour [21, Section 6.5.6.8]. In
C++17, it depends on whether the implementation enforces strict pointer safety or relaxed
pointer safety [31, Section 6.7.4.3.4]. For strict pointer safety, the use of any pointer that
is not safely derived is undefined behaviour. For relaxed pointer safety, the validity of a
pointer does not depend on whether it was safely derived, as long as it compares equal to
some safely derived pointer value its use is not necessarily undefined behaviour. Although
the out of bounds access in Listing 4.3 is clearly undefined behaviour for both languages
and anything could be returned as long as it is not the same in the variants or causes a
fault, the expected behaviour of the code in Listing 4.5 is that the dereference of ptr is
not an invalid access, and the 500th byte into the allocation should be an 'a'.

uintptr_t i_ptr = (uintptr_t) unify(malloc(1000));
// ... no modification to i_ptr
i_ptr += 1500;
printf("%p\n", i_ptr);
char* ptr = (char*) deunify(i_ptr);
ptr -= 1000;

*ptr = 'a';

Listing 4.5: Deunification of an out-of-bounds unified value.

Suppose that the result of the call to malloc gets immediately unified10 and that during
the type conversion to char*, a deunification operation happens.
In the count-by-allocation mapping with full size information presented above, the offset
unified value will point into a different logical allocation, and that one’s base pointer will
be used for the deunification operation, leading to a faulty result, consistent in all variants.
In the segmented mapping with a segment size bigger than 1500, the base pointer of the

10In this simple case, it likely would not if any kind of automated analysis is used, but this is assumed
here for the sake of discussion.
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logical allocation made by malloc will be used instead, and the result of the deunify
call will be an out of bounds char* 500 past the end of the allocation, similarly to how
i_ptr is a unified out-of-bounds pointer 500 past the end of the allocation in the UAS.
However if the out-of-bounds access was even further from the allocation or the segment
size was smaller, the same result as in the mapping with full size information could have
been obtained.
It therefore seems like over-estimating the size of the allocation as naturally done by the
segmented mapping actually helps to mitigate the security issues caused by the mapping
until now. This makes sense: if there existed only one logical allocation and all pointers
were derived from it, arbitrary arithmetic spanning the full 64-bit address space could be
performed on both its unified and variant-specific value without ever deunifying to a dif-
ferent logical allocation. It is therefore key to provide as much padding as possible around
every logical allocation such that out-of-bounds deunifications consider the correct base
pointer as theirs and when the pointer is brought back in bounds or an out-of-bounds ac-
cess happens, the results are consistent with the non-instrumented version of the variant.
There is no way to provide every logical allocation with the full 64-bit range of supported
arithmetic in the unified address space it should theoretically get to guarantee that no
out-of-bounds deunification will lead to the same faulty logical allocation in all the vari-
ants. Instead, a best-effort spacing of the logical allocations within a single 64-bit address
space11 is attempted. The main assumption here is that out-of-bounds accesses are more
likely to happen closely around the logical allocation than somewhere further away.

A simple way of achieving padding between logical allocations in the unified address space
is by assuming a maximum number and size of allocations up front, say both 232. A
fixed buffer of 4GB can then be assumed around every logical allocation12, catching all
underflows and overflows within that region, depending on where the base pointer of
the logical allocation is placed. If placed in the middle, 2GB of overflow is caught and
2GB of underflow. This is essentially the same as a segmented mapping without storing
size information and a segment size of 4GB. The earlier count strategy could again be
employed to support mmap, with memory overhead in this case; there can exist up to
a million contiguous pages inside every 4GB logical allocation, which is more than the
unused most significant bits in a tagged pointer can hold.

11The possibility of a fat pointer is not investigated in this work. Although an increased address space
(>64-bit) would allow for more spaced out placement of the logical allocations, it does not solve the
fundamental issue of unified arithmetic resulting in a deunification based on a different logical allocation.
The implementation complexity and memory overhead associated with increasing both native pointer
widths and integer widths is also non-negligible.

12Contrary to other red zone or electric fence schemes, we do not have to worry about the additional
memory consumption of our padding zones. The UAS is a made-up concept.
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Figure 4.6: Layout of VSAS and UAS in a spaced out mapping with fixed 4GB padding.

Unification becomes O(n) again unless size information is additionally stored. Deunifica-
tion is O(1) again, as the index into the mapping can straightforwardly be read from the
most significant 32 bit of the unified value.

Spaced out mapping with dynamic padding

To support mmap or to improve unification performance, the memory overhead of the
spaced out mapping with fixed padding increases rapidly: the count value requires at least
20 bits of storage unless upper bounds are assumed for that as well, and the size is upper
bounded at an additional 32 bits of storage. Also, although generous, the assumptions
it makes about the size of logical allocations and the amount of logical allocations do
not necessarily hold for every application. If they underestimate the actual amount, the
potential of having even more padding surrounding the logical allocations is wasted. The
representation in Figure 4.6 is merely conceptual and greatly overstates the coverage of
the UAS by the logical allocations in this regard. In reality, these four allocations occupy
only 4 ∗ 232/264 = 2.33e−8% of the UAS.
The need presents itself for a more flexible approach where all of the available address space
is always used to provide padding and the chances of faulty deunifications are minimized
to a theoretical minimum within the 64-bit address range. To this end, an iteration over
all 64-bit unified addresses is needed that visits every address exactly once but does so in
the most spaced out way possible: the middle address is visited first, then an address a
quarter into the address space, three-quarters into it, etc. This can be done by considering
a hypothetical balanced binary tree of all 64-bit values. A breadth-first (level-order)
traversal of that tree will visit every value in the desired order, as illustrated by Figure
4.7. This is referred to as the spaced out iteration order of the address space.
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Figure 4.7: Breadth-first search through a balanced binary tree of all 64-bit numbers.

If every logical allocation, regardless of its size, is now appointed to the next unified
address in the spaced out iteration order, the unallocated parts of the address space are
always maximally used to provide padding around the allocated regions, as can be seen in
Figure 4.8.

Figure 4.8: Layout of VSAS and UAS in a spaced out mapping with dynamic padding.

Note that he representation of the VSAS and UAS has not been realistically scaled relative
to the size of the allocations in these figures for the sake of clarity. In this case, although
the purple allocation is smaller in the UAS than it is in the VSAS, it is rather unlikely that
the actual size of the purple allocation would actually be bigger than 264/8, or around 2.3
quintillion bytes13, which is the difference between the unified base pointers of the yellow
and purple allocations. This is how big it would need to be in order to be limited in
size by its storage in the UAS for this amount of logical allocations. Nevertheless it does
highlight how this mapping does not take into account the size of the allocations at all,
and assumes just that they will fit. This is not necessarily a problematic assumption: a
contiguous allocation of 4GB is only compromised as soon as allocations are stored next
to each other separated by a mere 4GB of padding, which only happens 32 levels deep into
the tree. To reach this level,

∑31
n=1(2

n−1) = 231−1, or roughly 2 billion logical allocations
need to be registered14. At that point however, it merely becomes a theoretical possibility.

13In fact, it is impossible in practice given the architecturally defined addressable limit of 48 bits on
x86-64.

14Note that these allocations can be any size. Every allocation occupies an entry in the occurrence list.
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Even more allocations need to happen to increase the chances of collisions between logical
allocations. Although not impossible, this work is not immediately concerned with the
exhaustion of dynamic padding.

A unification operation walks the occurrence list and associates every entry with its cor-
responding unified address according to the spaced out iteration order. It determines the
logical allocation with the highest base pointer that is still smaller than the pointer to
unify and bases its result off of that entry. Note that optionally, the size of the allocation
can be stored (either segmented or not) to reduce the amount of entries that need to be
walked if the pointer is in bounds. For out of bounds pointers, the entire list still needs
to be walked to find the appropriate logical allocation.
A deunification operation needs to find the entry in the occurrence list that has the biggest
unified base pointer still smaller than the value to deunify. Similarly to the unification
operation, if the size of the allocation is stored the complexity can be reduced to O(n/2)
for in-bounds values.

To improve the performance of unification and deunification operations, the spaced out
iteration order can be investigated in more detail. Essentially, this mapping relies on the
fact that for an occurrence list with size N , the dlog2(N + 1)e most significant bits in ev-
ery unified address uniquely identify a logical allocation and that the least significant bits
represent the offset into that allocation. Hence, there exists some non-random one-to-one
mapping from the most significant bits in a unified address to an index in the occurrence
list, i.e. the level-order index of an entry in the tree. The most significant bits of the
unified addresses essentially follow the following pattern in the spaced out iteration order:
1..., 01..., 11..., 001..., 101..., etc. This is a simple big-endian binary counting
sequence. In fact, when reversing the endianness of the dlog2(N + 1)e most significant bits
in a unified address, the one-based level-order indices of the logical allocations, shown in
Figure 4.7, are obtained. The occurrence list stores logical allocations in the level-order
of their unified base pointers, meaning that these most significant bits can trivially be
translated into an index in the occurrence list, reducing the complexity of deunification
operations to O(1).

To support mmap, the counting method presented in the segmented mapping can be em-
ployed again. If entries are restricted to contain the base pointer only (no size information),
there are 16 bits in every entry that are unused and in which the count of pages can be
stored. This provides a maximum of over 64K pages, or 256MB. The spaced out mapping
is merely an efficient and more secure way of iterating the unified address space though
and the metadata that is stored in the occurrence list can still be of any layout and size.
For example, if only 15 out of 16 bits are used to store the count value (still providing
128MB), the extra bit can be used to signify whether the base pointer points directly to
a logical allocation, or to some metadata struct that then indirectly refers to the logical
allocation, besides providing additional count storage. This limits the memory overhead
of supporting excessively large mmap’ed regions to only those allocations that require it.

This mapping theoretically outperforms every previous mapping in terms of memory over-
head and unification/deunification performance, while additionally providing the best sup-
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port for out-of-bounds pointers. It provides linear unification complexity and constant-
time deunification complexity. It can also provide constant-time registration complexity,
if a larger memory overhead is acceptable, by never re-using an entry in the occurrence
list.

Complying with the alignment expectations of address values

At the beginning of Chapter 3 we explained our assumption that generally no guarantees
can hold about the addresses of logical allocations in the variants, except when such guar-
antees are explicitly provided by an API. Most notably, these include alignment guarantees
such as by calls to aligned_alloc. Additionally, malloc is also guaranteed to align the
memory it allocates to a boundary that is suitable for any object [21, Section 7.22.3.1]. Al-
though the alignment requirements of objects are technically implementation-defined [21,
Section 6.2.8], most implementations recursively define it as the largest alignment require-
ments of its members, so in essence it is never greater than the largest alignment require-
ment of a fundamental type, which is alignof(max_align_t) [21, Section 6.2.8.2].
This is typically either 8 or 16 bytes.

The unified addresses representing these allocations should satisfy the same alignment
guarantees, trivially exemplified by the snippet in listing 4.6.

void my_api_call(void* p) {
// p should be page aligned!!
assert(!((uintptr_t)p & 0xFFFU));
// ...

}

Listing 4.6: An example of an alignment check that
forces unified addresses to have similar

alignment to variant-specific ones.

All valid alignment boundaries are non-negative, integral powers of 2 [21, Section 6.2.8.4].
Hence, a value may accidentally also be aligned to a larger boundary than intended,
because the set of values that are aligned to a boundary 2B is a strict subset of the set of
values that are aligned to a boundary 2b < 2B. In other words: all values K∗2B that satisfy
an alignment 2B also necessarily satisfy every alignment 2b < 2B since 2B is divisible by 2b.
If a pointer value is obtained in one variant with a specific alignment, there might exist a
number of greater, accidental boundaries, that the equivalent pointers in the other variants
are not aligned to because it was not part of the API guarantees. The value of a pointer
will therefore satisfy a non-consistent amount of alignment boundaries across the variants
in the general case. This introduces non-determinism into the program: the result of an
alignment check on a pointer value to a boundary greater than the boundary that pointer
value was aligned to is essentially random in the variants. We can not simply solve this by
merely providing a unified address that satisfies the API-guaranteed alignment: even that
might have greater, accidental boundaries it is also aligned to. Although the result of the
alignment check will always be consistent in the variants, some of the variants’ pointers
may not satisfy the alignment that the unified address satisfied. It is therefore important
that the unified address is not aligned to any greater boundaries than the one that is
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API-specified. More generally, the unified address may not be aligned to any boundaries
that not all variant-specific values are aligned to (i).

In addition, we can not simply make sure that the unified value will just not satisfy any
alignment checks to avoid the problem. Apart from the fact that an application might
not expect an alignment check to always fail, it is also simply impossible. We could try to
unify every base pointer to an odd number, but offset pointers into the allocation could
still be even, or aligned to an even greater boundary. This highlights how not only the
base pointers’ unified values should be suitably aligned, but also all of the offset pointers.
The only way to do this is by making the unified base pointer at least aligned to all of the
boundaries that the variants’ pointers are aligned to for that allocation (ii).

(i) and (ii) restrict the unified base pointer to be aligned to exactly as many boundaries as
all of the variant’s pointers are. This is equivalent to being aligned to the biggest boundary
that all of the variant’s pointers are aligned to.

The biggest boundary that a value is aligned to is 2N where N is the number of times the
value is divisible by 2. From a binary perspective, N is the number of trailing zero bits in
the value. Hence, to ensure that the value does not satisfy any greater boundaries than
2N , the Nth bit in the binary representation of value should be set. Although this ensures
that the unified base pointer P to an allocation does not cause any issues in an alignment
check, also all of the offset pointers into the allocation should similarly not satisfy any
alignment checks that not all variants will satisfy. An example of this is glibc’s malloc
implementation, discussed in Chapter 3. The location of the 1MB aligned pointer inside
the 2MB region differed due to the offset pointers into the region having different maximal
alignment boundaries in the variants.

To mitigate this, all offset pointers into an allocation must have a similar alignment in all
variants and in the unified address space. As Figure 4.9 indicates, this is not the case by
default for an aligned allocation.

Figure 4.9: Distribution of highest alignment boundaries per address over the address space.

Any region of memory that is aligned to a boundary 2N is guaranteed to contain the same
consecutive highest-alignment boundaries, or alignment pattern, for a region of 2N bytes
from its aligned base address. If the size of the allocation, and therefore the range of
addresses that alignment checks are supposed to be supported on, extends beyond those
first 2N bytes, the alignment pattern in the rest of the allocation is not guaranteed to be
the same across variants. Figure 4.9 shows this for a logical allocation of 16 bytes, aligned
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to a 2-byte boundary. Hence, the alignment of a region of memory is not solely defined
by the lower N + 1 bits in the base address, but also by some number of bits on the more
significant side of the Nth bit. Every value of those more significant bits yields a different
alignment pattern in the allocation because it will determine what happens when a pointer
into the allocation is incremented beyond the first boundary and thus beyond the Nth bit.

A naive solution would be to find a pattern alignment value that is guaranteed to always
underestimate the alignment of every offset pointer. This is clearly not possible: an alloca-
tion of 16 bytes is guaranteed to contain an 8-byte aligned value, whatever the alignment
of the base address may be. There is no way to construct two different alignment patterns
in which the highest alignment of some address will not be greater than the highest align-
ment of the corresponding address in the other pattern. The alignment patterns must
therefore be equal, both in the variants’ address space and in the unified address space.

The bits that define the alignment pattern are the bits that an iteration through the entire
allocation accesses. The minimum amount can be expressed as

C =
⌈
log2

(
S + 2N

)⌉
where S is the size of the allocation and 2N is the alignment boundary. These C least-
significant bits have to be the same in all variants and may never all be zero, as the
amount of trailing zeroes will then be determined by the rest of the occurrence index and
the variant-specific values might not match that. A simple way to ensure this is by setting
all bits to 0 in the base pointer value except the Nth bit. This essentially initializes them
to 2N , after which sufficient bits are reserved to count from 2N to 2N + S. If any of the
less significant bits were 1, the base pointer would not satisfy the alignment requirements.
If any of the more significant bits (up to bit C − 1) would be 1, offsets up to S bytes into
the allocation would make the amount of reserved bits overflow, temporarily setting all of
them to zero. Together, these bits form a kind of mold that all the variants have to fit in
to have the same alignment, and we therefore refer to them as the corset of the address
value. Since the bits to the left of the Nth bit trap overflows of the Nth by being 0, we
call them the trap bits. Figure 4.10 shows the memory layout of a unified base pointer
value with the alignment mitigation applied.

Figure 4.10: Layout of a unified base pointer value.

This amount of trap bits only provides deterministic pattern alignment for up to 2C+1−2N

addresses after the base pointer address. Although this includes the size of the allocation,
out-of-bounds pointers might end up in alignment checks as well. It is impossible to
fully support alignment checks on out-of-bounds pointers. This is trivially provable by
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considering an out-of-bounds pointer F to an allocation with base pointer P and alignment
2N . To support any F , P would need enough trap bits to cover the entire address range
of 264 values, which is

C −N − 1 =
⌈
log2

(
264 + 2N

)⌉
−N − 1 = 65−N − 1 = 64−N

trap bits. Together with the N + 1 lower bits that need to be set to 2N , this makes for
a total of 64 − N + N + 1 = 65 bits that need be set to a fixed value in P . This is
an impossible situation for the Nth bit: according to the 64 −N most significant bits it
should be 0, but according to the N + 1 lower bits it should be 1.

In general, the more out-of-bounds pointers are supported around a given allocation, the
less logical allocations can be mapped as the trap bits occupy more of the address value.
Not supporting alignment checks on arbitrary out-of-bounds accesses might not be a huge
problem in practice though since they occur less frequently and are more indicative of a
potential memory error than out-of-bounds pointer arithmetic. At the cost of a decreased
address space, some redundant trap bits could be used if necessary.

The solution for alignment checks we propose is compatible with all of the presented map-
pings, potentially requiring them to occupy a slightly bigger portion of the unified address
space to ensure that a suitably aligned unified value can be secured for the base pointer.
It is worth pointing out how the restrictions placed on unified values to support align-
ment checks counter-act the spacing of the addresses to support out-of-bounds arithmetic:
consider the common situation where at first, a lot of small allocations are made with rela-
tively small alignment requirements. To maximally space out these allocations, we will use
the most significant bits in the unified addresses first. Then, suppose some bigger logical
allocations with stricter alignment requirements show up. More of the least significant
bits will have to be fixed to form the alignment corset in the unified base pointers, and
fewer most significant bits will be available to space out the allocations. In fact, using the
most significant bits first for the small allocations was the worst possible decision from an
alignment perspective. If it were known beforehand that allocations with bigger corsets
would show up later, the spacing of the initial small allocations could have been achieved
with less significant bits, potentially even using bits that are covered by the bigger allo-
cations’ corsets later on anyway. That way, all of the more significant bits remain open
to space out the bigger allocations. Conversely, this is the worst possible scenario from
a spaced out perspective: the small allocations will not be spread out across the entire
address space, unnecessarily wasting padding and increasing the chances of hiding true
divergences. It is not clear what the ideal practical balance would be for the average
program, but erring on the side of maximal spacing at all times currently seems desirable
for the following reasons:

1. It is unclear how to determine for the initial allocations how far they should be
spaced apart if maximal spacing is not employed.

2. For every allocation, it can be easily detected if we ran out of address space by
checking if the sum of the number of most significant bits used for spacing and the
bit-length of the corset is greater than 64. This will help to diagnose the impact of
our maximal spacing approach.

3. Since in a typical application the maximal expected alignment is no more than
sizeof(max_align_t) and by extension 4KB for applications that use mmap,
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the corset will likely be smaller than 14 bits. This gives the spacing about 50 bits
to work with at all times, which seems like a sufficient amount even if the largest
padding is initially wasted on the smallest allocations.

This might only become a problem when applications that use pointer tagging themselves
need to be supported. This would suddenly decrease the amount of spacing bits to about
32 and padding would rapidly become scarce. The solution seems to lie in a form of spacing
that takes into account the size of the allocation, such that padding is not equally dis-
tributed based on the difference between neighbouring base pointers but on the difference
between the end of an allocated region and the start of the next one in unified space. We
were not able to find a mapping with those properties that had any practically realistic
overhead though.

Note that this alignment check mitigation is not strictly coupled to any of the other ASB
mitigation strategies. It does not rely on any unified address space or registration of log-
ical allocations. The base addresses of all logical allocations should simply fit the corset
when they are allocated, however that may be implemented. The fact that the unified
base addresses must also fit this corset is an artifact of an imperfect detection strategy,
that might cause an alignment check on a unified value instead of a variant-specific value.

Finally, the most important consideration in this alignment mitigation is its influence on
the diversification of the variants. The trap bits essentially provide hard constraints for
pointer values, directly limiting memory layout diversification. Hence, an attacker knows
the value of the

C =
⌈
log2

(
S + 2N

)⌉
least significant bits for every pointer value, as they are the same in the variants. Previ-
ously, only the N least significant bits of every pointer value were known to the attacker.
The only additional information provided by the corset restriction is that the offset point-
ers into the variants will all have the same alignment as well. It is currently unclear how
this could aid an attacker during an exploit, as this only applies to the addresses within
allocations, the layouts of which are not randomized by non-distributed MVEEs anyway.

4.3 Security impact of the proposed approaches

The detection approach with the best ASB mitigation presented in this work is the pointer-
granular approach, as it ensures that the effect of any use of a pointer value that is acces-
sible in the program is the same in all the variants. However, as previously discussed, it is
also the worst from a security perspective since all pointer arithmetic happens in unified
space and all memory errors that the programmer can make are trivially also ensured to
have the same effect in all variants, directly counter-acting memory layout diversification.
This enables attacks that the MVEE can normally protect against, such as a ROP-attack
[10] that hijacks the control flow of the program by overwriting the value of a function
pointer. As the function pointer exists in unified form by default, it is deunified when used
in an indirect call operation. An attacker can therefore trivially locate the unified locations
of arbitrary functions during the development of the attack by counting the occurrence
index of that function beforehand, and, using for example a unified buffer overflow to write
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that value to a function pointer, redirect all variants to the same attacker-controlled target.

Depending on the abstraction level at which the instrumentation of load/store oper-
ations is performed, not all MLD is counter-acted by this approach. An example of this
are the return addresses that are pushed onto the stack before a function is called. This
operation is not manually written by the programmer, and neither is the load operation
that happens when the program jumps back to the location that the return address spec-
ifies. Hence, no deunification operation is applied when returning from a function and an
attack still needs to smash the stack with variant-specific code pointers to hijack control
flow, which the input replication and the disjoint code layouts in the variants mitigate [10].

Hence, a solution could be to simply not register or unify any code pointers. Although this
prevents an attacker from successfully hijacking control flow in all variants, this does not
prevent some of the data-only attacks that the MVEE could previously protect against.
For example, a recently disclosed buffer overflow in the sudo program allowed an attacker
to overwrite the string arguments to a dynamic symbol name lookup, the result of which
was later the target of an indirect call [59]. If the effect of all buffer overflows is the same
in all variants, this would still go undetected in GHUMVEE with our pointer-granular
ASB mitigation applied. Conversely, if no ASB mitigation were applied, the buffer over-
flow would write to different locations in the variants’ memory and the argument to the
dynamic symbol name lookup function could not be reliably controlled by the attacker.

At the root of these problems lies the deunification operation that, by definition, produces
a logically equivalent variant-specific value for every in-bounds unified value it is passed.
To ensure that the memory layout diversification of the variants can not in any way be
subverted, the deunification operation may only be applied to unified values that did not
undergo modification after they were created, since we can not verify in the general case
if any modification made them go out of bounds. In practice, if we can detect that a
unified value does not undergo modification before it is deunified, we can simply not unify
it in the first place. Hence, any practical use of the deunification operation is inherently
insecure. However, without using the deunification operation, it becomes hard to mitigate
some examples of ASB. This is highlighted by a slightly altered version of Listing 3.1,
shown in Listing 4.7.
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std::vector<int32_t> rel_ptrs;
char* base_ptr = (char*) malloc(sizeof(some_struct));
size_t N = 10;
for (int i = 0; i < N; i++)

rel_ptrs.push_back((char*)malloc(sizeof(some_struct))
- base_ptr);

std::sort(rel_ptrs.begin(), rel_ptrs.end());
std::vector<some_struct*> abs_ptrs;
for (auto rptr : rel_ptrs) {

some_struct* abs_ptr = base_ptr + rptr + argc;
printf("abs_ptr: %p \n", abs_ptr);

*abs_ptr = { /* untrusted data */ };
}

Listing 4.7: An example address-sensitive use of relative pointers

If the relative pointers in rel_ptrs are unified, i.e. represent the difference between two
unified pointers, the reconstruction of abs_ptr must first unify base_ptr, then add
rptr + argc to it, and then deunify the result. Hence, this is not possible without
deunification operation, but because argc might be attacker-controlled, a deunification
operation would definitely be unsafe here. Alternatively, if the values in rel_ptrs are
not unified to avoid the need for a deunification operation, the sort operation will cause
the absolute pointers to be reconstructed in a different order, leading to a divergence when
they are printed out.

However, the unification operation does not have to be applied at the moment that the
relative pointers are constructed to mitigate their ASB. At the end of Chapter 3, we sug-
gested to instrument the comparison operations inside the std::sort operation instead,
to return some variant-agnostic value that guarantees consistent ordering of the relative
pointers in the variants. Detecting these is complicated by the fact that a sort operation
does not necessarily incur any comparison operations, as previously shown in this chapter
in Listing 3.5.

This suggests that it is impossible in the general case to automatically mitigate all ASB
in a program without using a deunification operation. However, it must be possible to
manually mitigate all ASB in an arbitrary program without deunification operations. If
not, that would mean that having unsafe ASB is an essential part of the programs func-
tionality, which cannot be achieved without it. In our research, we found no evidence that
such programs exist.

As an alternative to removing the deunification operation, we provided a stochastic solu-
tion that still uses the deunification operation, but inserts as much padding as possible
in between allocations in the unified address space, to maximally detect which logical
allocation a unified value is out-of-bounds for, such that we can translate it back to an
equivalent out-of-bounds pointer for the variant-specific allocations. This is based on the
assumption that most out-of-bounds accesses will happen close around the allocation and
excludes many invalid memory accesses in programs from being exploited, especially when
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there are few entries in the occurrence list. Consider again the unsafe deunification of the
reconstructed unified abs_ptr in Listing 4.7. If argc is a 32-bit unsigned integer, it can
maximally cause abs_ptr to go 4GB out of bounds of its allocation. As discussed, when
using the spaced out mapping with dynamic padding, this will only lead to an insecure
deunification if there are

∑31
n=1(2

n−1) = 231 − 1, or roughly 2 billion logical allocations
registered, which is unrealistic for many real-world programs. Hence, in some cases, the
ASB mitigation does not prevent the MVEE from detecting a divergence.

The next chapter reports on the development of a prototype implementation of one of the
approaches presented in this chapter.



Chapter 5

Implementation details

We implemented a subset of the work presented in this thesis and evaluated it on the
GNU core utilities. Specifically, the operation-granular detection approach was selected
because it provides a benchmark for most of the claims in Chapter 3 about how ASB is
introduced into a program. The approach was not combined with automated analysis. For
the mapping, the count-by-allocation system with full size information was implemented
as it is the simplest mapping that supports all features necessary to be used in conjunction
with either of the detection approaches. No spaced out iteration order was used. We did
not integrate the solution into any MVEE, primarily because GHUMVEE did not support
running the GNU core utilities’ integrated test suite. Sometimes a workaround was there-
fore needed to provide functionality that would otherwise be provided by the MVEE.
The registration of logical allocations will be investigated first, after which the details
of the mitigation strategy for uninitialized data are outlined. Then, the instrumentation
rules specified by the operation-granular approach are implemented. Lastly, the imple-
mentation of the selected count-by-allocation mapping is covered.

5.1 Registering all logical allocations

To build the count-by-allocation mapping, all logical allocations need to be registered as
soon as their address could be referenced. Section 3.4 presented an exhaustive list of 3
operations through which addresses enter: a call to a dynamic allocation routine1, an
address-of operation and the decay of an array or function into a pointer. As discussed at
the beginning of Chapter 3, no assumptions can be made about the value of any of these
addresses in the face of full MLD. A fully compliant solution would therefore need to detect
these operations statically and wrap them with a call to a registration function. Although
detecting dynamic allocation calls and array/function decays might not be problematic,
the address of variables that refer to arbitrary locations inside a logical allocation can be
taken [21, Section 6.5.3.2.1], complicating the registration process. Consider the snippet
in Listing 5.1.

1Note that this was broadly interpreted in Section 3.4 to also include OS-level calls such as mmap and
(s)brk, as well as the non-standard alloca, which allocates on the stack.
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std::unordered_set<int*> ints;
struct {

int previous_field;
int some_field;

} __attribute__((packed)) example = {};
int* second_field = &example.some_field;
ints.insert(second_field);
ints.insert(second_field - 1);

Listing 5.1: An example of an address-of operation that
points to the middle of a logical allocation.

In this contrived example, the registration will first be called on the second field, after
which a pointer is derived from its address to reference the first field and used address-
sensitively. The second pointer will be unified but no entry in the occurrence list will
contain it. The obvious solution to this problem is to register stack allocations instead
of address-of operations. However, GHUMVEE, which this implementation targets, does
not diversify the internal stack layout [4]. We can therefore regard the entire stack as
a single logical allocation in this implementation and not instrument the address-of and
array/function-to-pointer decay operations. Although this violates the initial premise that
the ASB mitigation cannot rely on MLD-specific details, we do not consider this a short-
coming of the theoretical approach, but rather a shortcut taken to reduce implementation
complexity.

This excludes global variables from registration, so we need additional instrumentation to
support those again as well. In essence, we divide the address space up into three regions:
global data, stack data and dynamically allocated data. We cover the registration of
addresses from each region separately.

Registering global data

Global data should all be registered before the entry to main, since it can be used address-
sensitively from that point on. We took a similar approach as CaVer [60], where the authors
used an LLVM instrumentation pass to insert constructor functions into every translation
unit that invoke a registration call for all global data declared in that translation unit.
Constructor functions are a non-standard GNU extension of both C and C++ that are
guaranteed to run before main is called [61]. Although the order in which they are in-
voked can be specified within a translation unit, it is unspecified across translation units.
It was consistent on every program run in our testing though, which is important since the
registration order of globals directly determines the unified addresses they map to, which
should be the same across variants.

Concretely, we developed an optimization pass for LLVM IR that inserts an init function
and adds it to the global constructor list of the module [41]. All of the functions in this list
have a numerical priority associated with them, and they are executed in ascending order of
priority. Ideally, the function that registers the globals is ran before any other constructor
function in this list as all of them could contain ASB for which unification/deunification
calls are inserted, but we disregarded this in our implementation and it did not cause any
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issues.
Secondly, we iterate over all global variables that are accessible to the program2 and insert
calls to the register_global function that inserts them into the occurrence list. Since
the count-by-allocation mapping requires size information, that is also deduced from their
type. LLVM IR additionally contains alignment information about all variables, which is
also passed to the registration function. There is no accompanying unregister_global
function, as we assume they remain accessible throughout the duration of the program.
This is again a simplification, as the global data in dynamically loaded libraries could
be made inaccessible before the end of the program using dlclose [62], and subsequent
loaded libraries could reuse the same memory regions for their global data, leading to the
registration of an already registered region. However, this did not occur in our testing.

Note that registering all globals is an over-approximation to make sure that all globals
whose addresses are accessible in the program are registered. Although this increases the
memory overhead and hurts the run-time performance of every subsequent operation on
the occurrence list, performance is not the main evaluation criterion for this implementa-
tion.

Registering stack data

As discussed in the introduction to this chapter, we consider the stack region to be a
single logical allocation. The memory region occupied by the stack can be read from the
/proc/self/maps file on Linux [63]. However, during our implementation we noticed
that the offset of local variables to the end of the stack region3 was not consistent on
every program run. Instead, the offset shifted with multiple hundreds of bytes every time.
We speculate that this was caused by the interaction between ASLR and the alignment
of environment variables at the base of the stack, but we did not investigate this further.
Instead, we took the address of a local variable inside the function which allocates the
occurrence list and runs before any of the global registration calls happen (see later) and
assumed that, plus some fixed offset, the obtained address would approximate the stack
base. A stack size of 8MB was assumed with no support for enlargement. Note that
these approximations are not inherent to the approach: if the solution were integrated
into GHUMVEE, we could read a more precise stack region for every variant.

By registering the whole stack region this way, we do not need to explicitly support calls
to alloca, as it will merely expand some stack frame that is already registered.

Registering dynamically allocated data

To register dynamically allocated data, a number of different solutions were available,
like using link-time symbol wrapping [64] to resolve references to our interposers instead
of the real functions, but that would not catch the internal malloc calls in libc func-
tions like strdup and readline, which also allocate memory. Another solution would
be to modify glibc and insert the necessary registration calls manually into the alloca-
tion functions, but we wanted the registration to easily work across different malloc

2Some of the globals, specifically the variables starting with “llvm.” are not accessible by the target
program and are just used to hold meta-information about the module by LLVM.

3We assumed a stack with a downwards growth direction, so the end of the stack memory region
corresponds to the logical start of the stack.
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implementations as full MLD supports those. In the end we interposed the necessary
functions by linking the application to a shared library that contained implementations
for the functions before linking to libc. This resolved all calls to malloc to our wrapper
functions. An equivalent alternative would be the use of the LD_PRELOAD environment
variable, but that would have complicated running the integrated test suite of the GNU
core utilities. The functions to wrap are the following: C11 specifies malloc, calloc,
realloc and aligned_alloc [21, Section 7.22.3]. GNU’s glibc additionally supports
reallocarray, pvalloc, valloc, posix_memalign and memalign [65, 66], which
do not call malloc but an internal allocation function instead.

The system calls brk and sbrk should be wrapped as well for full functionality. However,
the default glibc malloc implementation uses (s)brk for allocations in the main arena
[67], so it can not be used safely by the application and should not be called. We therefore
omitted wrapping these.

Lastly, the mmap-family of system calls is somewhat unsafely supported by interposing
their wrapper functions in the libc API. Of course, an application could manually invoke
the system call without using the wrapper function, but this is unlikely. This is also an
approximation since the solution is not integrated into GHUMVEE, which already inter-
cepts all mmap calls since they are system calls. In total, we wrap calls to mmap, mmap2,
mmap64, munmap and mremap.

We do not call the original functions using dlsym with RTLD_NEXT as would be typical.
This was complicated due to the fact that dlsym itself calls calloc during its operation.
A full solution would be to use a hand-written temporary allocator just to cover memory
allocations during dlsym, but as a workaround we just called the respective internal
symbols that glibc uses for these functions instead, which are prefixed by __libc_. Note
that this restricts us to only use glibc’s ptmalloc in this implementation.

The dynamic allocation calls can be loosely subdivided into three groups: those that al-
locate, those that reallocate and those that free. Most of the allocating functions were
implemented on top of each other instead of calling into their respective counter-part in
glibc. As such valloc, pvalloc, aligned_alloc and posix_memalign were all
implemented on top of memalign given that they have only slightly different behaviour.
Similarly, malloc was implemented to call calloc4, and mmap64 and mmap2 call mmap.
The high-level operation of memalign, calloc and mmap is alike: call the real imple-
mentation, then register the result. Additionally, we took care to preserve the value of
errno after the call to the real implementation and restore it on function exit to ensure
maximal transparency of the registration process to the program.

The mmap wrapper is a bit more involved than the malloc/memalign wrappers, as it
specifies arguments like MAP_FIXED and MAP_FIXED_NOREPLACE that try to map pages
at a fixed address [22]. If a mapping already exists, it is replaced by the new mapping,
unless MAP_FIXED_NOREPLACE is specified. The call fails if the programmer attempts
to map pages to addresses that are not valid for its process. Because malloc also maps
pages, the use of MAP_FIXED is rather dangerous as it might invalidate an arbitrary
amount of pointers in the program. If it unmaps pages used by malloc, that is a bug
that will eventually lead to a divergence, so we can just register the new area and move

4This was because as part of the uninitialized data mitigation, we need to zero out the result of malloc
anyway.
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on. If it does not and it fails in some variants, it should fail in all variants with EINVAL.
If it does not fail in any variants and does not replace any malloc pages, it is unclear
whether it should be allowed to replace existing mappings only in some variants. For
MAP_FIXED_NOREPLACE, the program might use this to test if it is possible to extend a
mapping without automatically unmapping the pages that is tested for, similar to mremap.
The result of this can therefore differ in the variants, as some will not contain mappings
at the specified address but others might. To have consistent results in the variants, the
result of the call should therefore be checked across all of them before it can be decided
to support the new mapping. This is not possible outside of the MVEE however, so
we just always return MAP_FAILED with an EEXIST error code instead. Note that for
MAP_FIXED, this changes the semantics as it can normally only fail with EINVAL. This
did not cause issues in our testing however.

The reallocating functions are designed to always move the allocation somewhere else, un-
less in some cases when the new size is smaller than the original size. As such, realloc
simply allocates a new block using malloc and copies the allocation contents there. Since
the mapping stores the size of the allocation, that can trivially be retrieved. Most malloc
implementations also support malloc_usable_size, which returns the size of the allo-
cation that was actually used inside the implementation. This can be used in conjunction
with mappings that do not keep full size information. A more efficient implementation
could first test whether the new size is smaller than the old size and then check if the
actual realloc call moves the mapping. If not, no re-registration needs to happen.

For mremap [68] the implementation was a bit more involved as it may be used to replace
mappings or test whether an adjacent page is mapped. All of the mremap functionality
is supported, except growing the mapping in-place as that might have different results in
the variants. When called with a new size that is bigger than the old size, the default
behaviour of mremap is to try and grow the mapping in-place and return an error if
it fails. It can be made to move the mapping elsewhere if it can’t grow in-place by
specifying the MREMAP_MAYMOVE flag. In either case, if the new size is bigger than the
old size, we first try to mmap a page adjacent to the region specified by the old size using
MAP_FIXED_NOREPLACE. This ensures that the mapping cannot grow in place, after
which the actual mremap call is executed. If MREMAP_FIXED was specified and the call
succeeded, we unregister any previous registrations of the new region, as mremap will
replace existing mappings if MREMAP_FIXED is specified. We then register the new region
again, and, if MREMAP_DONTUNMAP was not specified, unregister the old region.
If the new size is smaller than the old size, we simply unregister the difference and forward
to the real mremap.

Lastly, the functions that deallocate are straightforwardly implemented by calling the real
deallocation function and also unregistering the associated region from the occurrence list.
For munmap, this currently causes a small semantic change as the unregistration function
will quit the program if the specified range was not previously registered. This is a measure
to detect invalid deallocation calls. However, it is explicitly allowed to call munmap on
pages that are not currently mapped [69]. Again, this caused no issues in our testing.
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5.2 Zeroing out all logical allocations

In Chapter 4 we suggested to zero out logical allocations when they are first allocated to
rid them of any uninitialized and variant-specific data they may contain. Chapter 3 shows
that this is only necessary for stack and heap allocations, as global data is either zero or
initialized at program startup and memory obtained directly from the operating system
through mmap is already zeroed for security reasons. The (s)brk functions could techni-
cally return uninitialized data when used in a certain way, but since they are not supposed
to be used directly by the program but rather only by the malloc implementation, zeroing
out heap allocations will cover that as well.

Zeroing out heap allocations

Given that we interpose all heap allocation functions already, we can trivially zero out
the allocations before returning the pointer to the newly allocated region. In the case of
malloc this is done by directing the call to calloc instead, which zeroes out allocations
by definition [21, Section 7.22.3.2]. For memalign a call to memset is inserted before
returning. All other heap allocation functions are implemented using either of these two,
so are therefore zeroed out as well.

Note that, depending on its implementation, realloc might require special care to make
sure its data is zeroed. In our implementation, it always calls malloc and copies the
allocation contents into the newly allocated block. Even when the new block is bigger, the
extra bytes will still be zero because our malloc zeroes memory. However, if the call to
realloc is instead allowed to go through to the actual realloc implementation of the
allocation algorithm, it might not always allocate a new block to grow the allocation, but
coalesce some adjacent free block into the allocation instead. Even if free were to zero
memory5, there might still be allocation-specific metadata contained between the end of
the new region and the end of the old region. Alternatively, even if growing the allocation
does allocate a new block, that call might not necessarily go through one of the functions
we interpose but use some internal function instead. Hence, to zero out the bytes gained
by a growing reallocation, a memset should be inserted that zeroes out the bytes between
the end of the old block and the end of the new block. Since we implemented our own
realloc instead of calling into the actual implementation, this was not necessary for us.

Also note that typically, when interposing libc functions, care needs to be taken to make
sure it is compatible with the semantics the compiler assumes for them [70, 71, 46]. For
example, based on the knowledge that malloc has no side-effects, the compiler could op-
timize away redundant calls to malloc and free [72], or potentially assume that memory
read from malloc is uninitialized at first, enabling a host of additional optimizations [46].
However, it does not matter for our work if a redundant allocation call is optimized away
or if the compiler assumes data is uninitialized while it is not anymore: we are not trying
to remove the bugs that are in the program due to reading uninitialized data, but rather
making sure the effects are not different in the variants. Hence, the semantics we provide
for these functions are more strict than the ones the compiler assumes. This makes it
unnecessary to disable some optimizations, as would typically be done for an interposed

5To clarify, free does not zero memory in our implementation, nor is it required.
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allocation library using the no-builtin-... flags [70, 71].

Zeroing out stack allocations

To zero out stack allocations, calls to memset could be inserted after every local vari-
able declaration. However, previous research has shown that the run-time overhead of
doing that can be large [72]. Modern compilers have recently gained out-of-the-box
support for flags that enable the automatic initialization of stack variables, including
struct padding, with either zero or a predefined pattern [36, 73, 74], mostly out of se-
curity concerns to combat information leaks [74]. We therefore simply used Clang’s
-ftrivial-auto-var-init=zero flag. Clang developers have expressed concern that
the ubiquitous use of this flag may cause programmers to rely on zero-initialization for
future programs however [36], and are pushing the use of pattern-initialization as a solu-
tion. The long-term goal is to remove support for automatic zero-initialization from the
compiler entirely as soon as the observed performance regressions for pattern initialization
are mediated, made clear by the mandatory use of a long flag in conjunction with auto-
matic zero initialization. For our purposes it is unimportant whether zero-initialization
or pattern-initialization is used: as long as the data is initialized to the same value in all
variants, it will not cause divergences.

5.3 Instrumenting the program with unification calls

As discussed at the beginning of this chapter, the operation-granular approach is taken
to ensure that no ASB can occur in the program. We showed in Chapter 4 how this
approach comes in two flavours, depending on the support for relative pointers. In this
implementation, we chose not to support those as we could not find any use of them in
the GNU core utilities. Hence, the only instrumentation rule we applied was to unify the
conversion from pointers to integers and deunify the conversion back.

LLVM provides dedicated instructions for converting pointers to integers and back [41].
We therefore implemented the instrumentation by extending the LLVM IR optimization
pass that registers the global variables to also iterate the instructions in the module and
replace all ptrtoint instructions with calls to unify, and inttoptr instructions with
calls to deunify.

This over-estimates the amount of pointer-to-int conversions, including implicit ones, that
the program actually contains, as shown by Lee et al. [75, 76]. In their experiments,
86% of ptrtoint instructions were generated by LLVM itself, not by the programmer
[76]. In an attempt to reduce overhead because of this, we modified the Clang front-
end to tag all conversions between pointer and integers with an isExplicit attribute
that signified that the conversion was emitted as part of the initial IR generation pro-
cess and represented a real conversion expressed in the source code. This allowed us to
only replace those conversions with unify/deunify calls instead of all of them. This
works well for the majority of ways in which pointers can be converted to integers. In
fact, for all of the possible conversion methods discussed in Section 3.4, Clang success-
fully detects them as type conversions for their most simple forms and, even without
optimizations, replaces them with the appropriate instructions. However, this falls apart
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when slightly more complex constructs are used. For example, in the obstacks imple-
mentation of Gnulib [43], the __PTR_ALIGN macro essentially expands to a construct6

like NULL + (ptr - (false ? other_ptr : NULL)) for which the Clang front-
end does not emit a ptrtoint on ptr, even though the programmer fully intended this.
However, it does emit an inttoptr on the addition of an integer to the NULL pointer,
causing a non-unified pointer value to be deunified and crashing the mapping. This ex-
emplifies why it is not sufficient to only instrument conversions that the front-end could
detect. When the program is compiled with optimizations instead, the optimizer folds
the conditional evaluation of false into NULL and a ptrtoint is emitted. In addition,
some of the tagged instructions also disappear due to the optimization passes that run on
the IR. To resolve this, we instrumented all ptrtoint/inttoptr instructions instead,
and optimizations were turned on. This exposes our solution to the many conversions that
the compiler generates on itself, increasing the overhead of our implementation. Addition-
ally, just like Lee et al. report in [75], some optimization passes emit instructions that
essentially type pun pointers into integers and back, without ptrtoint or inttoptr
instructions. Listing 5.2 shows a real snippet of generated IR at optimization level 3 from
cat.c in the GNU core utilities.

%arrayidx = getelementptr inbounds i8*, i8** %argv, i64 %some_idx
%1 = bitcast i8** %arrayidx to i64*
%2 = load i64, i64* %1, align 8
store i64 %2, i64* bitcast (i8** @infile to i64*), align 8
%3 = inttoptr i64 %2 to i8*
Listing 5.2: A piece of LLVM IR generated at optimization level 3 that uses type punning to

convert a pointer to an integer.

Listing 5.3 shows the equivalent C pseudo-code7. A pointer to one of the strings passed
in argv is obtained, called arrayidx. Then, the pointer value arrayidx refers to
is converted to an integer using type punning. This should have incurred a ptrtoint
instruction. The pointer value infile is then set to this integer value, essentially equating
it to *arrayidx. This is again done using type punning, by reinterpreting the address
of infile to be a pointer to an integer instead. This operation should technically have
incurred a inttoptr instruction, but since the integer that is converted from was obtained
using type punning and is therefore not unified, it actually prevents the deunification of
a non-unified value in this case. Finally, the integer is cast to a pointer the regular way,
causing a deunification on a non-unified value anyway.

6For brevity, the casts necessary to make this construct compile are omitted.
7Note that this is not the code that produced this IR, but merely a C representation to show the type

punning construct more clearly.
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char* infile;
char** arrayidx = argv + some_idx;
// type pun '*array_idx' as integer
i64 var2 = *((i64*) arrayidx);
// type pun 'infile' as integer

*((i64*)&infile) = var2;
char* var3 = (char*) var2;

Listing 5.3: C pseudo-code representing
Listing 5.2.

These compiler-generated type puns are currently not detected in our implementation and
crash the mapping. A more robust approach would be to follow Lee et al.’s method of
removing these, by disabling the specific optimizations that cause this [75].

5.4 Implementing the unified address space

We used the count-by-allocation mapping with full size information to provide unified ad-
dress values to the variants, mainly because mappings can easily be padded with dummy
allocations to reach suitably aligned unified addresses. Similarly, mmap is naturally sup-
ported by mapping all pages in a region to consecutive unified addresses, such that they can
individually be unmapped. The main disadvantages of this mapping are its poor run-time
performance with linear unification and deunification complexity, 16-byte per-allocation
memory overhead and, depending on their placement, very tightly fit logical allocations.
However, neither performance overhead nor security implications are the main metrics
that this implementation will be evaluated on.

We implemented the mapping in C++17 using two STL vectors; one to store the base
pointer and size entries for every logical allocation and one to store whether the logical
allocation in the first list at the same index is currently free or not. We refer to the former
as the alloc list, and the latter as the free list. We did not store the booleans in the free
list in the alloc list entries to avoid increasing the memory overhead even further. Instead,
we used a std::vector<bool> for the free list which is may store every boolean as a
single bit [31, Section 26.3.12], and on most implementations it will. We still use the term
occurrence list to refer to the abstract list of metadata entries that make up the mapping,
regardless of how that is implemented.

The basic registration procedure takes a base pointer, a size S and an alignment boundary
B and uses a simple first-fit allocation algorithm to find a free entry in the occurrence
list that contains the range

[
K ∗ 2B,K ∗ 2B + S

[
with K some non-zero positive integer

(K ∈ N>0). If no entry is found, it allocates an extra entry at the end of the occurrence
list. If there is spacing between the start of the free region the allocation fits into and the
unified value at which it should be mapped8, an additional free entry is inserted to pad the

8Note that the value of K ∗ 2B does not fully satisfy the requirements for unified base pointer values
as specified by the alignment check mitigation in Chapter 4. Specifically, it accounts for neither the trap
bits nor the fact that it might accidentally be aligned to a bigger boundary than the variant-specific base
pointer values. However, this did not cause issues in our testing.
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entry until its unified value is K ∗ 2B. Note that it is not technically necessary that the
registration functions receive any alignment information about the base pointer values.
If the solution were integrated into GHUMVEE, we could find the highest boundary
that the pointers in all variants support and assume that as the alignment boundary
of the allocation. However, that might accidentally over-estimate the real alignment of
the allocation and lead to an unnecessarily large corset on the base pointer values, likely
wasting memory in the variants and address space in the unified address space.

A deregistration operation finds the entry in the occurrence list this pointer belongs to,
updates the free list to signify its deallocated status and coalesces adjacent free blocks to
combat fragmentation.

For mmap’ed pages, a more high-level registration function is provided that calls the afore-
mentioned registration function once per page while making sure that the pages are also
consecutive in the unified address space.

The unification and deunification procedures are implemented exactly as described in
Chapter 4. They are both O(n/2) for in-bounds pointers and worst-case O(n) on out of
bounds pointers.

Due to the way we register global variables, the registration function is likely called before
the global variables in the translation unit that contains the occurrence list are constructed.
Therefore, the alloc and free list are stored as members of a metadata class, of which
the only instance is a local static variable in a function that returns a reference to that
variable. All accesses to the metadata must therefore call that function. As local static
variables are constructed when the function they belong to is called for the first time [31,
Section 9.7.4], it does not matter which order the translation units are initialized in: the
metadata instance and the corresponding vectors will always be constructed first.

During the registration and unregistration calls, the occurrence list itself might grow or
shrink and therefore invoke dynamic allocation routines which are interposed to call the
registration function, potentially leading to an infinite recursion and stack overflow. To
avoid this, we introduced a global hook flag, that every interposer function queries to
determine if it should call the registration functions or not. Inside all the functions that
operate on the occurrence list we clear this flag for the duration of the function, which
guarantees that interposer functions will pass their calls through to libc without registering
anything. In fact, a generalization of this hooking system is necessary to support different
allocation strategies: the monitor must not terminate execution if different allocation
algorithms call different system calls at different times.



Chapter 6

Evaluation

To evaluate our implementation described in Chapter 5, we created a program that im-
plement all of the ASB cases from Chapter 3. In this chapter, we will discuss the results
of our evaluation of the performance, completeness and transparency of our implemented
ASB mitigation. The precise ASB tests that we ran are listed below:

1. Hash table pointer insertion and iteration.

2. Alignment checks, strictly enforced by system calls that require page alignment.

3. Relative pointers across allocations.

4. Writing out padding bytes and uninitialized variables.

5. Writing out pointer variables, both as integers and as pointers.

6. Sorting an array based on pointer variables.

7. Storing non-address values in pointer variables.

The final case is not ASB but was included to highlight how other unrelated coding
patterns can interact with the ASB mitigation. We implemented a dynamic array and
simple hash table ourselves to support the testing, as GHUMVEE loads its own patched
standard C and C++ libraries, which we did not instrument.

Evaluation of performance impact

We compiled these cases using Clang 11.0.0 with optimization level 2 and accumulated
their execution time 100 times on a 4-core, 2.8 GHz1 Intel Core i7 Ubuntu Linux 20.10
machine with 16 GB of RAM to obtain the results reported in Table 6.1.

1We disabled the turbo on the CPU to get consistent results between runs.
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Native With regis-
tration

isExplicit Full instru-
mentation

Full 130ms (100%) 15.5s (11823%) 15.5s (11823%) crash on
rel_ptrs

No rel_ptrs 90ms (100%) 12.8s (14122%) 12.8s (14122%) 14.9s (16456%)

Table 6.1: Performance measurements of the prototype implementation.

From this data, the main performance culprit seems to be the registration and zeroing
of logical allocations. To validate these results, we obtained micro-benchmarks for the
registration code specifically. On a sequence of 10000 allocations randomly varying in size
from 1 to 1000 bytes, the overhead of using calloc instead of malloc turned out to be
already around 100%. We observed a slowdown of factor 950 compared to the base per-
formance of calloc when additionally registering its allocations in the occurrence list.
Dropping the alignment requirements for the unified addresses reduces this to a factor
450. This makes sense based on the way unified alignment is implemented, as discussed in
Chapter 5: up to 3 entries are inserted into the occurrence list for every aligned allocation
request.

However, this drastic performance hit is not an inherent property of registering allocations.
Contrary to the implemented count-by-allocation mapping which has to find free entries
by iterating a list, the spaced out mapping with dynamic padding can just walk a series
of predefined values2 to generate new spaced out unified addresses in O(1), as discussed
in Chapter 4. A unification operation then reduces to an insertion at the end of a list.
To overview this best-case scenario, we altered the micro-benchmark to push the returned
pointer value into a dynamic array. This reduced the performance overhead of zeroing and
registering allocations compared to raw malloc to under 10%.

A second observation of the data in Table 6.1 is that the instrumentation of explicit type
conversions does not incur any additional overhead. This is a rather misleading measure-
ment, as simply no conversions are being instrumented. As discussed in Chapter 5, the
conversions tagged isExplicit by the front-end do not necessarily survive the optimiza-
tions and in this case, none of them did.

Finally, after instrumenting all inttoptr/ptrtoint instructions, the program crashed
on the relative pointers case because it tries to store the difference between two pointer
values back into a pointer variable. This is a combination of the relative pointers case and
the case where non-address values are stored in a pointer. This conversion will incur a
deunification operation, which, when it can not find a logical allocation that contains the
value, will crash the program.

Alternatively, it could just assume this integer is not address-dependent, cast it to a pointer
and return that instead. However, a problem arises when that pointer is cast back to an
integer at a later point: the unification operation in some variants might find a logical
allocation in variant-specific space that contains it. There is no way of checking for this

2Note that this is a memory-inefficient method that may not be suitable for every application.
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at the moment of deunification either, because the content of the occurrence list could
change arbitrarily before the unification operation.

Another option could be to either tag the returned pointer or cache its value so it can be
detected at the unification operation that this was not actually a variant-specific pointer
value. However, arbitrary arithmetic in the full 264 number range might be performed
on the value while it is a pointer, obscuring any trace of the value it had when it was
originally deunified.

The only way it can be detected at unification time that this value is not a variant-specific
value is because it has the same value in all variants. Therefore, we propose to check on
every unification operation whether the pointer value to unify is the same in all variants,
and if so, bypass all mapping and return its value instead. This also trivially handles
pointer values like NULL and MAP_FAILED, although for performance reasons it might be
desirable to explicitly check for those.

There still exists an edge case where a bug is introduced: the deunification operation can
not tell from an integer if it is a unified pointer value or some non-address value. If it is a
valid unified address that points into a logical allocation, it will be deunified to different
but equivalent variant-specific values. If it then undergoes pointer arithmetic and goes out
of bounds of the logical allocation, the unification operation will be on different variant-
specific values and will not detect that this was originally an non-address value, which will
make it return a different integer value than the programmer expects.

Ultimately, these issues are resolved if the detection approach does not depend on the
language’s type system, since a pointer that contains a non-address value will never be
dereferenced by the program. This is only the case for the pointer-granular approach and
its associated extension with automated program analysis.

When removing the relative pointers case, the program runs fine when all conversions
are instrumented, although an additional overhead of over 2300% is observed. In all test
cases together, there are no intttoptr instructions, and only 3 ptrtoint’s. Still, the
unification operation is executed a total of 779 times in a single pass of the test cases.
This is a worst-case scenario, as the program is specifically constructed to contain as much
ASB as possible.
Additionally, no automatic program analysis was employed to reduce the use of these op-
erations and due to extra free entries the alignment registration inserts, the unification
operation has to walk almost twice as many entries as in the spaced out mapping with dy-
namic padding. By removing the alignment requirement, the overhead reduces to 2077%
more than the non-instrumented registration with an alignment requirement of 1.

Evaluation of ASB coverage

The high-level structure of the ASB in the test program is as follows. First, we create a
setup where dynamic and static3 struct allocations are stored in a dynamic array. Then,
we sort the array on ascending pointer values to make sure that the ordering is address-
dependent. We then iterate over the array and pass every struct to the main test

3Due to an unresolved bug in the registration of stack allocations, there were not included in the
testing.
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function that contains the bulk of the ASB. The contents of all the struct members, as
well as their addresses, are printed out. Out of all their members, only two are initialized:
a pointer and an integer that both hold the struct’s own address. After that, it is
verified for the mmap’ed allocations that they are aligned on a 4KB boundary and we
check if any of the malloc’ed ones happen to be aligned on a page boundary as well. If
that is the case, we make a dummy call to madvise whose first argument is required to be
page-aligned [57] to enforce that the alignment check can not be a bogus value. Finally, to
conclude the main test procedure, we write the content of the struct directly to stdout
as a buffer using write, to cover the padding and the pointer-in-buffer case.

After this, we insert all the structs into a hash table and repeat the iteration: the same
function is called for each struct.

Then, we create a new dynamic array that contains relative pointers to all the struct based
on the address of some global variable. As previously discussed, the integers are stored
inside pointer variables. We then sort that array and call the main ASB function again
on the reconstructed absolute pointers. This concludes the test program.

The implemented approach is not designed to mitigate all ASB of the test cases. It covers
the hash table case, the sorted pointers array case, the integers that hold pointer values
and all uninitialized variable cases. With some manual instrumentation help, also printing
out pointer values can be supported.

We confirmed this for the aforementioned cases by running our test suite in GHUMVEE on
an Ubuntu Linux 18.04 QEMU virtual machine. We disabled all test cases we don’t support
first to verify that our asb mitigation works. GHUMVEE with two variants detects
a divergence in the buffer contents of the write system call when the struct contents
are written to stdout. When recompiling the same program with our instrumentation
enabled, all of the allocations are registered and zeroed out. When their value is being
written to their integer member, our instrumentation unifies the value. When sorting the
array, the pointer values are compared. LLVM IR emits ptrtoint instructions to do the
comparison on the integer representation of the pointer values. Therefore, the comparison
operates on the unified values instead and the order of the pointer values is the same
in both variants. When the main ASB function prints out the members, they are either
zero or a unified address, since the pointer member was disabled. The alignment check
on malloc was disabled, because some unified addresses might incidentally align to a
4KB boundary and over-state the alignment boundaries of the variants’ values. Finally,
because the padding is also zero-initialized, writing out the struct as a buffer does not
cause any divergences.

The insertion of pointers into the hash table incurs a pointer to int conversion. We did this
using pointer arithmetic, by subtracting the NULL pointer from the inserted pointer. The
front-end successfully detects this as a pointer to integer conversion and the unification
operation is applied. Therefore, the subsequent iteration causes no issues.

We observe no divergences when the instrumentation is applied, whereas the monitor
terminates the variants on every one of these cases without our instrumentation.



6 Evaluation 76

Evaluation of transparancy

To evaluate whether our solution is transparent to the functionality of the program, i.e.
does not introduce bugs, we compiled both the GNU core utilities and Gnulib with our
instrumentation passes applied and linked them with our interposer library. We then mea-
sured the amount of test cases in their integrated test suites that failed because of our
instrumentation.

First, we enabled only the registration, to test that separately. Out of the 627 tests in the
GNU core utilities’ test suite, 517 passed and 110 were skipped. No tests failed. Without
any registration, two more test cases are skipped instead of passing. This means that with
our instrumentation, 2 more cases passed than without our instrumentation. Although this
is not necessarily problematic, it highlights how the solution is not entirely transparent to
the application. Since no observable error occurred in our registration system, we suspect
this was caused by the use of GCC to compile the unregistered version. In the case of
Gnulib, 315 out of 362 test cases passed with our registration disabled, 47 were skipped
and no tests failed. When enabling our registration, 1 of the succeeding tests fails, namely
a regex parses which gets stuck in an infinite loop. We were not able to determine the
cause of this issue.

After also enabling instrumentation of the isExplicit ptrtoint/inttoptr instruc-
tions at optimization level 0, 4 test cases in the core utilities failed, all because of the
__PTR_ALIGN macro in Gnulib’s obstacks implementation. As previously discussed, this
is because Clang doesn’t fold the evaluation of a false conditional ternary operator into
the else expression there without optimizations.



Chapter 7

Conclusions and future work

In this work, we evaluated the problem of address-sensitive behaviour causing benign di-
vergences in Multi-Variant Execution Environments (MVEEs) and proposed solutions to
automatically mitigate it.

We gave an overview of the problem in Chapter 3 with some real-world snippets and
examples, explaining how they introduce ASB and when they are used in practice. The
main insight from this part is that ASB is widespread and includes common operations
like checking the alignment of memory addresses. We then constructed a theoretical frame
of reference for ASB to provide different perspectives on the ways it is introduced into a
program, and how it causes divergences. We argued that ASB caused by uninitialized
data is merely a side-effect of memory layout diversification and can easily be mitigated
with existing solutions. Hence, its analysis was not the main concern of this work.

We identified that ASB caused by pointer variables does not necessarily cause divergences,
and introduced the concepts of safe and unsafe ASB accordingly. Secondly, we made the
distinction between strong ASB that is caused by interpreting pointer values for their
properties as a regular number, rather than as a reference to some allocation, and weak
ASB in which a pointer is only used to refer to an allocation as a system call argument.
Within strong ASB, we found that a non-address value is often derived from an address
value as a result of an address-sensitive operation, e.g. the result of an alignment check.
This non-address value is still variant-specific, but not always used to make an assumption
about the pointer value. In the hash table case, there is no information that the calcu-
lated index provides about the original pointer value that was hashed. However, in the
alignment check case, if the result says that the pointer is aligned to a certain boundary,
the program expects that it can be used in an operation that strictly requires that align-
ment, such as an aligned vector instruction. We called this set of assumptions that the
program makes about a pointer value based on the result of an address-sensitive operation
the feedback of that operation. If no feedback exists, such as in the hash table case, the
address-sensitive behaviour is said to be non-reversed. Otherwise, it is reversed and care
should be taken when mitigating its effects that no assumptions are broken.

In Chapter 4, we outlined multiple mitigation strategies to automatically neutralize the ef-
fects of ASB in the variants. We first provided an informal proof argument that neither the
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use of static nor dynamic analysis would be able to provide full ASB detection coverage.
Alternatively, we presented two rulesets for instrumentation logic that provided approx-
imate catch-all protection against ASB, based on the insights into its causes and effects
gained in Chapter 3. The pointer-granular approach outperforms the operation-granular
approach in terms of completeness, as the latter is unable to detect every conversion from
pointers to other types. However, especially for safe programs, the former incurs a con-
siderably higher run-time overhead due to the instrumented load/store operations. Both
suffer from similar security flaws for out-of-bounds accesses where they end up potentially
making all variants access the same logical allocation on an invalid memory access, de-
pending on the mapping that they use.

We also showed how these approaches can be optionally extended using automated pro-
gram analysis. The examination of a concrete example suggested that the security and
performance improvements can be the largest when it is used in conjunction with the
pointer-granular approach.

To provide consistent values in all variants for address-sensitive operations, we created a
unified address space and mapped it to the virtual address space of every variant. We
showed that the implementation of this mapping influences the characteristics of the de-
tection strategies significantly: if logical allocations unify to addresses that are numerically
close together, the security problem with the out-of-bounds access is amplified as most of
them occur close to the allocation. The key insight to construct these mappings is that
the allocation order of logical allocations is the same across variants. We analyzed two
mappings in detail: one which tightly fits consecutive allocations next to each other in
unified space, and another which divides the allocation up into equally-sized segments and
stores those next to each other. We showed how the latter could outperform the former
in every regard if the segment size is well-chosen.

In addition to the automated program analysis, we investigated the use of more spaced out
unified addresses as a way of minimizing the chances of hiding true divergences caused by
memory errors. Notably, the breadth-first traversal of a complete binary tree of all 64-bit
numbers was suggested to dynamically place new allocations as far away from previous
ones as possible.

We also provided a solution to the remaining issue of alignment checks, based on the
concept of a corset that all base pointers are forced into. This ensures that all offset
pointers into every allocation, both in variant-specific space and in unified space, always
support the the same set of alignment boundaries. We investigated the interaction of this
additional constraint on the unified address space with the previously discussed spacing of
the addresses and concluded that both have opposing interests when deciding the spacing
for new allocations.

In Chapter 5, we presented a limited implementation of the operation-granular approach
using a modified Clang compiler and LLVM IR instrumentation pass, supported by the
count-by-allocation mapping. We evaluated its effectiveness, performance and trans-
parency on a suite of ASB test cases in Chapter 6 and confirmed that it was able to
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automatically mitigate all ASB, except in cases where our simplistic instrumentation based
on the ptrtoint/inttoptr instructions did not suffice to detect all necessary conver-
sions. Specifically, our implementation failed to automatically mitigate the use of sorted
relative pointers, undetected pointers in buffers passed to system calls, and pointers that
are formatted into strings and then passed to system calls. The main limitations of the
implementation were the high performance overhead of the registration and unification
procedures and its strong dependence on the specific instructions that Clang/LLVM used
to represent syntactical constructs.

Future work

Although this work brings a lot of previously non-existent background to the issue of ASB
in MVEEs, the main problem that remains unsolved is that of securely providing address-
sensitive operations with the same values in the variants without neutralising MLD or
introducing bugs. The security analysis at the end of Chapter 4 shows that even with
the spaced out mappings we present, full ASB mitigation in the variants can not prevent
that the ROP-immunity of GHUMVEE with disjoint code layouts is at least partly com-
promised. We suspect that this trade-off between ASB coverage and security is inherent
to the applied memory layout diversification, and that future work will need to strike a
balance between both.

The main benefit of MVEEs is the comprehensive protection against zero-day binary ex-
ploits they provide at a relatively low performance overhead. Although ASB limits their
applicability in practice, a decrease in their security guarantees decreases their relevance
as a secure protection mechanism entirely. Additionally, in a future production system,
we expect programs to be ran inside the MVEE for a long time, e.g. a web server. Nei-
ther ASB, nor a weakened protection against ROP-attacks is tolerable in this scenario,
but having the MVEE not terminate execution because of ASB is of limited relevance if it
makes real attacks go unnoticed as well. Therefore, we propose that future research efforts
focus on developing automated program analyses that can maximally assist a developer in
neutralising ASB, e.g. by using a conservative static analysis that proves for as much of
the code as possible that it does not contain unsafe ASB, and already instruments the code
with unification operations if it can detect non-reversed ASB. For cases where it cannot
make strong guarantees, it should not attempt to provide an approximation. Introducing
a bug into the program that may or may not cause a divergence is objectively worse than
having false positives because of ASB.

If future work accepts the premise that the deunification operation may not be used in
the ASB mitigation, we propose that the mappings presented in Chapter 4 are revisited
as they can likely be simplified. For instance, it may not be necessary anymore to register
every allocation, or any at all.

However, future work could also continue investigating ways of safely providing deunifi-
cation support, as we believe that fully automatic ASB mitigation requires it. To that
end, we suggest the use of fat pointers in the unified space to further increase the spacing
beyond any arithmetic that could be applied by the program. For example, the program
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could be instrumented to store unified values in 128-bit wide integers, and explicitly disal-
low the addition of values greater than 64-bit to this value. Every unified value can then
exist in its own 64-bit wide domain, that can always be safely translated back to an offset
pointer around the allocation it was derived from.

Alternatively, it could be investigated whether existing solutions that provide bounds-
checking for pointer values, like low-fat pointers [77], can be adapted to provide bounds
checking for unified values instead. The key idea here is that unified values may not appear
as frequently in the program as regular pointers, and explicit bounds checks only for them
could thus incur a significantly lower performance impact. Additionally, the layout of the
unified address space can be designed at will to better fit an efficient bounds-checking
scheme.
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Appendix A

Error-free counting sort without
control-flow dependence on the
data

void sort(uint32_t* data, size_t len) {
static std::vector<bool> cnts(UINT32_MAX);
std::fill(cnts.begin(), cnts.end(), false);
static std::vector<uint32_t> cpy;
cpy.resize(len + 1);
for (size_t i = 0; i < len; i++)

cnts[data[i]] = true;
for (size_t i = 0, j = 0; i < cnts.size(); i++) {

cpy[j] = i;
j += cnts[i];

}
std::copy(cpy.data(), cpy.data() + len, data);

}
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Appendix B

FPU-accelerated deunification in
spaced out mapping with dynamic
padding

Before we realized that the level-order index of the unified addresses into the occurence
list with size N was simply contained as a big-endian number in the most significant
dlog2(N + 1)e bits of the address, we used a different way of providing O(1) deunification
performance in the spaced out mapping with dynamic padding provided in Chapter 4. We
include it here, not as a serious alternative to the approach presented in the main thesis
text, but because it shows an esoteric use case for the x87 Floating Point Unit.

Instead of keeping the entries in level-order in the occurrence list, they can also be kept
in ascending order of their unified values, called the in-order iteration order of the tree,
essentially reducing the list to a complete binary tree with the amount of levels L =
dlog2(n + 1)e for n the size of the occurrence list. This allows a binary search for the
correct logical allocation with a complexity of O(log(n)): from most-significant to least-
significant bit, the unified value contains the choice that should be made on every node
in the tree to get to the entry that contains its logical allocation. For example, an offset
pointer into the purple allocation in Figure 4.8 starts with 00..., corresponding to the
4th element in the breadth-first traversal of the tree. The first 0 in the unified value
rules out indices > size/2, as their unified values are guaranteed to be bigger than 0....
The second 0 means that the index is < size/4, as entries with an index higher than
that start with either 01... or 11.... Together these constrain the index to be 0 for
an occurrence list of size 4, which is where the purple allocation resides. To clarify, a
practical implementation of the procedure is shown implemented in C in Listing B.1.
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size_t unified2idx(uintptr_t unified_val, size_t nr_entries) {
double idx = 0;
unsigned char levels = ceil(log2(nr_entries + 1));
for (unsigned char i = 1; i <= levels; i++) {

bool greater = (((uint64_t)1) << (64 - i)) & unified_val;
idx += ((double)(greater * nr_entries)) / (i + 1);

}
return floor(idx);

}

Listing B.1: Calculating the index of a logical allocation in the occurrence list using a binary
search based off the unified value in the spaced out mapping with dynamic

padding.

The implementation in Listing B.1 essentially considers the unified value as a sequence of
booleans that decide whether an exponentially decreasing positive value gets added to the
index or not. This is represented visually in Figure B.11. The formula for calculating the
index is thus

index =

(
b63 ∗

S

2
+ b62 ∗

S

4
+ b61 ∗

S

8
+ ... + b64−L ∗

S

2L

)
= S ∗

L∑
i=1

(b64−i ∗ 2−i)

with b63...64−L the L most significant bits in the unified value and S the size of the occur-
rence list. Essentially, the above formula specifies a mathematical relation between the
element value and its in-order index in this specific complete binary tree: the multipliers
are multiplied by their respective bit value and the size of the occurrence list and summed
together to produce the index value of the corresponding entry in the occurrence list.

Figure B.1: Multiplier values of every bit in a unified pointer value using the spaced out
mapping with dynamic padding.

This operation closely resembles the encoding of floating point values as defined by the
IEEE 754 standard [78]. A double-precision floating point value is subdivided into 3 areas
as represented by Figure B.2

1Note that only the most significant L bits have non-zero multiplier values, as the binary tree does not
contain every 64-bit value in the general case.
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Figure B.2: “The memory format of an IEEE 754 double floating point value.”, source: [3].

and the decimal value is computed as follows

(−1)sign ∗

(
1 +

52∑
i=1

(f52−i ∗ 2−i)

)
∗ 2exponent−1023

where f52...1 are the fraction bits. The summation term contains exactly the behaviour
needed: a series of bits is multiplied with an exponentially decreasing negative power of 2
and the results are summed together.

When filling in the parameters, the sign bit should clearly be 0. The 51st fraction bit
is multiplied by 2−1, wich is desired, so the 52 fraction bits can be set to the 52 most
significant bits of the unified pointer value2. One would think that the exponent can
be set to L + 1023 such that 2exponent−1023 = size. However, this only works when the
size is a power of 2, as L is ceiled. Therefore, the multiplication should happen sepa-
rately, after converting the double back to an integer. The exponent is thus set to 1023,
which renders the exponent term 1. After converting to an integer, the result will be
1 + sum of multipliers, so to get the desired result, it should be multiplied by size after
subtracting 1. The resulting implementation is shown in Listing B.2.

The Floating Point Unit (FPU), ubiquitous inside many modern processors, essentially
performs the binary search in a single instruction this way, further decreasing deunification
time complexity from O(log(n)) to O(1).

2Note that the use of 64-bit floating point values restricts the binary tree to 52 levels, which is no
problem in practice as the x86-64 architecture currently limits the addressable region to 52 bits in theory,
and 48 bits in practice.
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typedef union number {
double dub;
struct {

uint64_t fraction : 52;
uint16_t exp : 11;
bool sign : 1;

} __attribute__((packed)) data;
} number;

size_t unified2idx(uintptr_t unified_val, size_t nr_entries) {
number idx;
idx.data.sign = 0;
idx.data.exp = 1023;
uint64_t levels = ceil(log2(nr_entries + 1));
idx.data.fraction = ((unified_val >> 12) >> (52 - levels));
idx.data.fraction <<= (52 - levels);
idx.dub = floor((idx.dub - 1)*nr_entries);
return idx.dub; // conversion to integer

}

Listing B.2: Calculating the index of a logical allocation in the occurrence list using a
hardware-accelerated binary search based off the unified value in the spaced out

mapping with dynamic padding.
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SAMENVATTING
Multi-variante Uitvoeromgevingen (MVUOs) beloven uitgebreide
bescherming tegen aanvallen op basis van geheugenfouten door
meerdere gediversifieerde varianten van hetzelfde programma pa-
rallel uit te voeren, waarbij de toestand van het programma op
bepaalde Rendez-Vous Punten (RVPs) wordt gecontroleerd en ver-
geleken. Bestaande programma’s kunnen zich echter van nature
niet-deterministisch gedragen wanneer ze worden onderworpen
aan bepaalde vormen van diversificatie die een typische MVUO
of besturingssysteem toepast. Een opmerkelijk probleem is Adres-
Gevoelig Gedrag (AGG), waarbij specifieke adreswaarden de control
flow van een programma beïnvloeden of de staat ervan op het mo-
ment van de RVP’s aanpassen, wat goedaardige divergenties in de
MVUOs veroorzaakt. Hoewel dit de toepasbaarheid van MVUOs in
de praktijk beperkt, bestaat er geen eerder werk dat de volledige
reikwijdte van dit probleem verkent. Dit werk beoogt die leemte
op te vullen en onderzoekt de verschillende manieren waarop AGG
wordt uitgeoefend door programma’s in de praktijk.

We presenteren een overzicht en categorisatie van het probleem
om de oorzaken en gevolgen ervan te belichten, alsmede om een
theoretisch referentiekader te scheppen. Bovendien onderzoeken
we in detail de mogelijkheid om het AGG van een programma
automatisch te verwijderen of te neutraliseren met behoud van
maximale diversificatie. We stellen verschillende strategieën voor
die we evalueren op basis van criteria zoals doeltreffendheid, vei-
ligheidsimpact en prestatie-impact. Sommige van de strategieën in
dit werk kunnen alle door ons onderzochte voorbeelden van AGG
op transparante wijze onderdrukken.

Trefwoorden:Niet-determinisme,Multi-Variante Uitvoeringsom-
gevingen, Geheugenlayoutdiversificatie, Adres-gevoelig Gedrag

1 INTRODUCTIE
Multi-variante uitvoeringsomgevingen (MVUOs) zijn een een veel-
belovend onderzoeksgebied in de strijd tegen binaire exploitatie-
aanvallen, door de uitgebreide variëteit aan aanvallen waartegen
ze bescherming bieden en de lage prestatie-impact waarmee ze dat
doen. In een MVUO worden N varianten van hetzelfde programma
gelijktijdig in lockstep uitgevoerd, onder toezicht van een monitor
die ze dezelfde invoer geeft en de uitvoering beëindigt als ze van
elkaar afwijken. De varianten worden met behulp van softwaredi-
versiteitstechnieken uit hetzelfde programma gegenereerd, in die
mate dat het moeilijk is voor een aanvaller om een kwetsbaarheid

in het programma te exploiteren op een manier die de varianten
niet van elkaar doet afwijken. Typisch onderschept een monitor de
varianten voor elke systeem-oproep die ze uitvoeren [1].

Sommige van de softwarediversiteitstechnieken die doorMVUOs
worden versterkt diversifiëren de geheugenlayout van de varian-
ten. Deze technieken omvatten, onder andere, het gebruik van
verschillende geheugenallocatie-algoritmen [2, 3], het omkeren
van de groeirichting van de stack [4, 5] en Address Space Layout
Randomization (ASLR) [6]. Echter, eerder onderzoek heeft aange-
toond dat programma’s zich niet deterministisch gedragen bij een
veranderende geheugenindeling [1, 7]: ze kunnen verschillende
resultaten opleveren, verschillende codepaden volgen of verschil-
lende neveneffecten hebben, afhankelijk van waar het geheugen
dat ze gebruiken zich in de adresruimte bevindt. We noemen dit
het Adres-Gevoelig Gedrag (AGG) van een programma, en aange-
zien een MVUO varianten die niet dezelfde systeem-oproepen met
equivalente argumenten uitvoeren als kwaadaardig beschouwt, ver-
oorzaakt dit veel goedaardige divergenties bij software in de echte
wereld. Dit draagt momenteel bij aan de beperkte toepasbaarheid
van MVUOs in de praktijk.

2 OVERZICHT VAN ADRES-GEVOELIG
GEDRAG

De meeste prominente manier waarop programma’s typisch adres-
gevoelig zijn is door adreswaarden te printen of als sleutel in hasht-
abellen te gebruiken. In het eerste geval zal de monitor een ver-
schil bemerken in de argumenten van de varianten voor de write
systeem-oproep, in het laatste geval zal de interne volgorde waarin
de adreswaarden opgeslagen zijn in the hashtabel en hun verde-
ling over de buckets verschillen in de varianten. Wanneer het pro-
gramma daarna itereert over de hashtabel zal het de adreswaarden
in een verschillende volgorde beschouwen in de varianten, waar-
door die compleet verschillende acties kunnen ondernemen in een
verschillende volgorde.

Een ander voorbeeld is het gebruik van niet-geïnitialiseerd ge-
heugen door het programma. Als variabelen of geheugenregio’s
niet expliciet geïnitialiseerd worden door de programmeur zal hun
inhoud typisch niet dezelfde zijn in de varianten, vooral wanneer
die onderworpen zijn aan een gediversifieerde geheugenlayout.

Als het gebruik van een van deze adres-gevoelige constructies
leidt to de uitvoer van niet-equivalente systeemoproepen in de
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varianten zal de monitor een divergentie observeren die niet te on-
derscheiden is van een kwaadaardige divergentie als gevolg van een
poging tot exploitatie, en de executie van de varianten stopzetten.
Merk op dat adres-gevoelige operaties niet per se tot divergenties
leiden: in Listing 1 is te zien hoe het startadres van een string wordt
afgerond naar het volgende veelvoud van 8 met behulp van een
iteratie.

size_t strlen(const char * str) {

const char *char_ptr;

for (char_ptr = str;

(char_ptr & (7u)) != 0;

++ char_ptr)

if (* char_ptr == '\0')

return char_ptr - str;

// ... rest of implementation

}

Listing 1: Aligneringsoperatie in de 64-bit
strlen implementatie in glibc.

Hoewel de loop conditie adres-gevoelig is door de waarde van
char_ptr te inspecteren, worden er geen systeem-oproepen uit-
gevoerd in dit fragment en treedt er dus geen divergentie op. Dit
noemenwe veilig adres-gevoelig gedrag, in tegenstelling tot onveilig
AGG dat wel tot divergenties leidt.

3 MITIGATIE VAN ADRES-GEVOELIG
GEDRAG

Aangezien vals-positieve divergenties als gevolg van adres-gevoelig
gedrag niet te onderscheiden zijn van echte divergenties veroor-
zaakt door varianten die aangevallen worden, menen we dat de
oplossing van het probleem erin bestaat om te voorkomen dat de va-
rianten überhaupt afwijkend gedrag vertonen ten gevolge van AGG.
Dit doen we door een nieuwe adresruimte te introduceren in alle
varianten genaamd de eengemaakte adresruimte (EAR) die elke vari-
ant mapt naar zijn gediversifieerde, variant-specifieke adresruimte
(VSAR). Deze mapping gebeurt op een allocatie-granulariteit, aan-
gezien operaties die ondersteund zijn op variant-specifieke adressen
zoals pointer arithmetic ook ondersteund moeten zijn in de EAR.
Echter, niet alle operaties kunnen op deze manier ondersteund wor-
den: een operatie die het geheugen op een bepaald adres leest of
ernaar schrijft is enkel valide voor variant-specifieke adreswaarden,
aangezien de eengemaakte adreswaarden nooit naar equivalente
plaatsen in het geheugen van de varianten kunnen refereren door
de geheugenlayoutdiversifatie. Voor zulke operaties moeten alle
adreswaarden in het programma dus ten minste tijdelijk vertaald
worden naar hun variant-specifieke representatie.

In het algemeen moet er voor de neutralisatie van AGG een set
van regels opgesteld worden die bepalen wanneer adreswaarden
bestaan in hun eengemaakte vorm en wanneer niet. Deze moeten
er enerzijds voor zorgen dat, wanneer varianten het adres gebrui-
ken om geheugen te manipuleren, het in zijn variant-specifieke
vorm voorkomt, en wanneer het gebruikt wordt in adres-gevoelige
operaties, het in zijn eengemaakte vorm voorkomt om een gelijke
uitkomst van die operaties in de varianten te garanderen. Deze set
van regels vormt in feite een eenmakingsgrens in alle varianten, die

bepaalt wanneer adreswaarden in welke vorm bestaan. We analy-
seren verschillende posities waar we deze grens kunnen leggen.

3.1 De ligging van de eenmakingsgrens bepalen
De eenvoudigste positionering van de eenmakingsgrens is om adres-
waarden standaard altijd in hun eengemaakte vorm te laten bestaan,
en enkel tijdelijk te vertalen naar hun variant-specieke vorm wan-
neer ze gebruikt worden om geheugeninhoud te manipuleren. Aan-
gezien operaties die geheugen manipuleren nooit onveilig kunnen
zijn, i.e. ze behandelen altijd dezelfde geheugeninhoud in de varian-
ten zolang er geen eerdere divergentie heeft opgetreden, zorgt dit
er triviaal voor dat alle adres-gevoelige operaties in de varianten
op exact dezelfde waarden opereren, en dus hetzelfde effect hebben.
Hiernaar refereren we als de pointer-granulaire eenmakingsgrens.

Concreet betekent dit dat alle manieren waarop het programma
in de eerste plaats aan adreswaarden kan geraken geïnstrumenteerd
moeten worden om de eengemaakte adreswaarden te voorzien in
de plaats, en dat alle load/store operaties geïnstrumenteerd moe-
ten worden om het adres waarop ze opereren te vertalen naar de
VSAR. We identificeren 3 bronnen van adreswaarden in C/C++
programma’s: address-of operaties (& operator), calls naar dynami-
sche allocatiefuncties wiens operatie gediversifieerd is en decay-
operaties van arrays of functies naar pointer variabelen. Als deze
allemaal geïnstrumenteerd worden, kunnen er geen divergenties
meer optreden ten gevolge van adres-gevoelig gedrag.

Echter, deze eenmakingsgrens houdt geen rekening met de re-
den waarom geheugenlayoutdiversificatie wordt toegepast in de
eerste plaats: ongeldige geheugentoegangen zoals out-of-bounds
load/store operaties [8] worden verondersteld verschillende ef-
fecten te hebben in de varianten, zodat een aanval geen gadgets
kan lokaliseren in alle varianten tegelijk. Als pointer variabelen
standaard eengemaakt zijn zal alle arithmetic op deze variabelen
ook in de eengemaakte adresruimte gebeuren. Daardoor kan het
resultaat van out-of-bounds arithmetic zich in een regio van de
EAR bevinden die overeenkomt met een andere allocatie, gelijk-
aardig aan hoe een buffer overflow in de VSAR de geheugeninhoud
van een volgende allocatie manipuleert. Elke geheugentoegang op
deze out-of-bounds eengemaakte waarde wordt echter by definition
vertaald naar equivalente geheugenregio’s in de varianten en werkt
zo de diversificatie van geheugenlayout tegen. Merk op dat dit niet
alle geheugenlayoutdiversificatie neutraliseert: enkel load/store
operaties die expliciet in de source code voorkomen moeten ge-
ïnstrumenteerd worden, aangezien enkel adreswaarden die in de
source code voorkomen eengemaakt zijn. Het return adres in een
functie frame dat bepaalt naar waar de controle terug moet sprin-
gen wanneer de functie returnt wordt bijvoorbeeld niet expliciet
geschreven in source code, dus dat adres zal altijd variant-specifiek
zijn. De geheugentoegang die gebeurt wanneer de functie returnt
is ook niet geschreven in source code en daarom niet geïnstrumen-
teerd. Deze eenmakingsgrens behoudt daardoor bescherming tegen
klassieke stack smashing attacks [9]. De geheugentoegang die ge-
beurt door het oproepen van functies via functie pointers is echter
wel geïnstrumenteerd, aangezien de functiepointers eengemaakt
zijn. Dit zorgt ervoor dat de aanvaller een invalide geheugentoe-
gang zoals de out-of-bounds check can exploiteren om de waarde
van een functiepointer te wijzigen naar een eengemaakte waarde
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die vertaalt naar dezelfde functie in al de varianten. Simpelweg een
uitzondering maken voor functiepointers en deze wél in variant-
specifieke vorm laten bestaan lost dit probleem niet op: enerzijds
staat dit de pointer toe om gebruikt te worden in AGG, maar, nog
belangrijker, buffer overflows kunnen dan nog steeds gebruikt wor-
den om stringwaarden te overschrijven die later gebruikt worden
om dynamisch functies op te zoeken. Een exploit in het sudo pro-
gramma [10], gepubliceerd in januari 2021, is hier een voorbeeld
van.

Een alternatieve manier om de eenmakingsgrens te leggen is
door alle adreswaarden normaal gezien in hun variant-specifieke
vorm te laten bestaan, en pas te vertalen naar eengemaakte vorm
zodra ze geconverteerd worden naar een niet-pointer type, zoals
een integer type. Dit zorgt ervoor dat pointer arithmetic niet langer
gebeurt op eengemaakte adreswaarden. Echter, de iteratie die leidt
tot een out-of-bounds waarde kan ook gewoon gebeuren op de
integer representatie van adreswaarden na conversie, met dezelfde
consequenties als bij de pointer-granulaire eenmakingsgrens tot
gevolg. Bovendien omvat deze eenmakingsgrens niet alle AGG: het
verschil tussen twee variant-specifieke adreswaarden is ook een
variant-specifieke waarde en kan gebruikt worden om divergenties
te veroorzaken.

Ons onderzoek suggereert dat zodra een variabele is vertaald
naar zijn eengemaakte vorm, er in principe geen operatie op mag
gebeuren waarvan het resultaat mogelijks een out-of-bounds een-
gemaakte adreswaarde is. In het algemeen beperkt dit de set van
toegestane operaties op eengemaakte waarden tot diegenen die de
waarde transformeren op een irreversibele manier, zodat het pro-
gramma het resultaat nooit kan gebruiken om een variant-specifiek
adres te bekomen. Indien dat inderdaad nooit meer gebeurd, is
er geen nood meer aan de optie om eengemaakte adressen terug
te vertalen naar variant-specifieke adressen: elke operatie die een
eengemaakt adres vereist mag nooit op basis van dat adres een ver-
taling naar de VSAR ondergaan en gebruikt worden om geheugen
te manipuleren aangezien het in eengemaakte vorm out-of-bounds
heeft kunnen gaan. Dit maakt het moeilijk om het fragment in
Listing 2 te ondersteunen vanuit een AGG perspectief.

std::vector <int32_t > rels;

char* b_ptr = malloc(sizeof a_struct );

size_t N = 10;

for (int i = 0; i < N; i++)

rels.push_back(malloc(sizeof a_struct)

- b_ptr);

std::sort(rels.begin(), rels.end ());

std::vector <a_struct*> abs_ptrs;

for (auto rptr : rels) {

a_struct* abs_ptr = b_ptr + rptr + argc;

*abs_ptr = { /* untrusted data */ };

printf("%p\n", abs_ptr );

}

Listing 2: Een voorbeeld van AGG op basis van relatieve
pointers.

Als de waarden in rels eengemaakt zijn, i.e. het verschil tussen
twee eengemaakte adreswaarden representeren, moet de recon-
structie van abs_ptr eerst b_ptr vertalen naar een eengemaakte
waarde, dan rptr + argc eraan toevoegen en dan terug vertalen
naar de VSAR. Dit is dus niet veilig indien argc een onbetrouwbare
input is. Echter, indien de waarden in rels niet eengemaakt zijn zal
de std::sort operatie ervoor zorgen dat de adreswaarden in een
verschillende volgorde uitgeprint worden, wat tot een divergentie
leidt. Ons onderzoek verschaft geen volledige oplossing voor dit
probleem.

Figuur 1: Breedte-eerst iteratie over de eerste 3 niveaus van
een gebalanceerde binaire boom van alle 64-bit getallen.

3.2 Het ontwerp van de eengemaakte
adresruimte

Om de mapping tussen variant-specifieke en eengemaakte adres-
waarden te implementeren baseren we ons op de kennis dat alle
allocaties in dezelfde volgorde gebeuren worden in de varianten.
We kunnen daarom het beginadres van elke allocatie, zowel sta-
tisch als dynamisch, registreren in een lijst en de positie in die lijst
gebruiken om op een variant-agnostische manier naar dezelfde
allocatie in alle varianten te refereren. Idealiter willen we er ook
voor zorgen dat wanneer een eengemaakte adreswaarde in allocatie
A X aantal bytes out-of-bounds gaat en dan terug vertaald wordt
naar de VSAR, de variant-specifieke adreswaarde die we verkrijgen
X aantal bytes out-of-bounds is van de equivalente allocatie A in
de VSAR. Dit zorgt ervoor dat een out-of-bounds geheugentoegang
nog steeds verschillende effecten heeft in de varianten. Hoewel we
dit niet kunnen ondersteunen voor eengemaakte adreswaarden die
willekeurig ver out-of-bounds zijn, kunnen we wel de eengemaakte
beginadressen van de allocaties zo veel mogelijk spreiden over de
EAR en er dan vanuit gaan bij een vertaling van een eengemaakte
waarde P naar de VSAR dat het dichtstbijzijnde eengemaakte begi-
nadres B de allocatie voorstelt waarin P out-of-bounds is. Vanuit de
assumptie dat de meeste out-of-bounds waarden voor een gegeven
allocatie eerder dicht bij de grenzen van die allocatie liggen kunnen
we dan de bulk van de out-of-bounds waarden op een veilige ma-
nier terug vertalen naar de VSAR. Om deze spreiding te bekomen
willen we idealiter over alle 64-bit waarden itereren op een ma-
nier die de waarden in de meest uiteengespreide volgorde bezoekt,
zonder dezelfde waarde tweemaal te bezoeken: eerst het middelste
adres in de hele 64-bit ruimte, dan een adres een kwart erin, dan
driekwart erin, dan een achtste, etc. Daartoe beschouwen we een
hypothetische gebalanceerde binaire boom van alle 64-bit waarden,
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Figuur 2: Conceptuele layout van de mapping tussen de VSAR en de EAR.

waarvan de bovenste 3 niveaus gerepresenteerd zijn in Figuur 1. Een
breedte-eerst iteratie over deze boom passeert alle 64-bit waarden
in de gewenste volgorde. Indien we elke allocatie, onafhankelijk
van zijn grootte, nu toewijzen aan de volgende waarde in de iteratie
van de boom, bereiken we een EAR waarin de de allocaties steeds
maximaal verspreid zijn over de volledige adresruimte. De mapping
van VSAR naar EAR is conceptueel voorgesteld in Figuur 2. Om
te vertalen van een eengemaakte adreswaarde naar een variant-
specifieke waarde in een mapping met 𝑁 geregistreerde allocaties
kunnen we kijken naar de

⌈
log2 (𝑁 + 1)⌉ meest significante bits.

Deze zullen de breedte-eerst-index van de allocatie waarnaar deze
eengemaakte waarde verwijst bevatten in big-endian bit volgorde.
Door de endianness van deze bits om te draaien en dan uit te lezen1
verkrijgen we dus de gewenste index in 𝑂 (1).

Als we nu terug het specifieke voorbeeld van Listing 2 beschou-
wen waarin argc, een 32-bit integer, werd opgeteld bij een eenge-
maakte adreswaarde, kan de resulterende out-of-bounds waarde
nooit verder dan 4GB (= 232) buiten zijn allocatie liggen. Voordat
deze mapping die out-of-bounds pointer zou vertalen naar een
andere allocatie dan degene tot welke hij behoort, en dus een vei-
ligheidsrisico zou vormen, moet de afstand tussen consecutieve
allocaties in de EAR 4GB of minder zijn. Hiervoor moet de boom 32
levels diep zijn, wat betekent dat meer dan

∑31
𝑛=1 (2𝑛−1) = 231 − 1 =

2 miljard allocaties moeten geregistreerd zijn. Zolang dat niet het
geval is, is dit snippet veilig. Deze mapping voorziet daarom ten
minste een stochastische bescherming tegen de veiligheidsproble-
men van de EAR.

4 CONCLUSIE
In dit artikel beschouwden we het probleem van adres-gevoelig ge-
drag (AGG), de invloed die het op dit moment heeft op MVUOs, de
vormen waarin het in programma’s voorkomt en de mogelijkheden
om het op een automatische en transparante manier te neutrali-
seren. Hiertoe introduceerden we een nieuwe adresruimte waar
elke variant een mapping naar heeft vanuit zijn eigen specifieke
adresruimte, zodat we variant-agnostische adreswaarden kunnen
bezorgen aan adres-gevoelige operaties. We analyseerden de im-
pact van deze mapping op de veiligheidsgaranties die een MVUO
beoogt en concludeerden dat deze in sommige gevallen divergenties
verbergt van de MVUO. Echter, we toonden ook hoe de kans dat dit

1Op een systeem met little endian architectuur, zoals we beschouwen in dit werk.

gebeurt geminimaliseerd kan worden door een specifieke layout te
gebruiken in the variant-agnostische adresruimte.
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PROBLEM
Multi-Variant Execution Environments (MVEEs) execute 
diversified variants of the same program in parallel and 
compare their behaviour at certain Rendez-Vous Points 
(RVPs). Hence, if the behaviour of the program depends 
on specific address values, the variants might naturally 
diverge and cause the MVEE to falsely terminate 
execution. This is called address-sensitive behaviour 
(ASB).

RESULTS
The first set of complete 
categorizations of ASB is 
presented, exemplified by a large 
sample of real-world  code. 
Additionally, multiple automatic 
mitigation strategies are explored 
and analyzed. 
Finally, an LLVM-based solution 
is implemented and evaluated on 
the GNU core utilities.

METHOD
An overlaid, unified address 
space (UAS) is introduced 
and mapped to each variant-
specific address space 
(VSAS) with byte-granularity. 
Combined with a fine-grained 
detection approach that 
highlights potential address-
sensitive operations, all ASB 
can effectively be neutralized 
across variants by 
occasionally and temporarily 
replacing pointer values with 
their variant-agnostic handle 
at run-time.
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